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1. INTRODUCTION

The concept of the Ricci soliton is introduced by Hamilton in [9], which is a natural generalization of Einstein metrics. Study of Ricci
soliton over different geometric spaces is one of interesting topics in geometry and mathematical physics. In particular, it has become more
important after G. Perelman applied Ricci solitons to solve the long standing Poincare conjecture. In [10,13,15–18], Einstein manifolds
associated to affine connections (especially semi-symmetric metric connections and semi-symmetric non-metric connections) were studied
(see the definition 3.2 in [18] and the definition 3.1 in [10]). It is natural to study Ricci solitons associated to affine connections. Affine Ricci
solitons had been introduced and studied, for example, see [6,8,11,12,14].

Our motivation is to find more examples of affine Ricci solitons. A three-dimensional Lie group Gi(i = 1, · · · , 7) is a sub-Riemannian
manifold. In [1], Balogh, Tyson and Vecchi applied a Riemannian approximation scheme to get a Gauss-Bonnet theorem in the Heisenberg
group H

3. Let TH3 = span{e1, e2, e3}, then they took the distribution H = span{e1, e2} and H⊥ = span{e3} (for details, see [1]).
Similarly in [20], for the affine group and the group of rigid motions of the Minkowski plane, we took the similar distributions. In [21],
for the Lorentzian Heisenberg group, we also took the similar construction. Motivated by [1,20,21], we consider the similar distribution
H = span{e1, e2} and H⊥ = span{e3} for the three dimensional Lorentzian Lie group Gi(i = 1, · · · , 7). Then for the above distribution,
we have a natural product structure J: Je1 = e1, Je2 = e2, Je3 = −e3. In [7], Etayo and Santamaria studied some affine connections
on manifolds with the product structure or the complex structure. In particular, the canonical connection and the Kobayashi-Nomizu
connection for a product structure were studied. So we consider the canonical connection and the Kobayashi-Nomizu connection associated
to the above distribution on the Gi and get affine Ricci solitons associated to the canonical connection and the Kobayashi-Nomizu connection.
In particular, from our results, we can get affine Einstein manifolds associated to the canonical connection and the Kobayashi-Nomizu
connection. It is interesting to consider relations between affine Ricci solitons associated to the canonical connection and the Kobayashi-
Nomizu connection and Ricci solitons associated to the Levi-Civita connection. It is also interesting to study affine Ricci solitons associated
to other affine connections, for example, Schouten-Van Kampen connections and Vranceanu connections associated to the above product
structure and semi-symmetric connections.
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By the canonical connection and the Kobayashi-Nomizu connection on three-dimensional Lorentzian Lie groups, we obtain some examples
of affine Ricci solitons. But we find that the coefficient λ of the metric tensor g in the Ricci soliton equation (see (3.13) and (3.14)) is always zero
for these obtained examples. In order to obtain more interesting examples with the non zero coefficient λ, we introduce perturbed canonical
connections and perturbed Kobayashi-Nomizu connections in Section 4. Using these perturbed connections, we get some examples of affine
Ricci solitons with the non zero coefficient λ.

In [3], Calvaruso studied three-dimensional generalized Ricci solitons, both in Riemannian and Lorentzian settings. He determined their
homogeneous models, classifying left-invariant generalized Ricci solitons on three-dimensional Lie groups. Then it is natural to classify affine
Ricci solitons on three-dimensional Lie groups. In [19], we introduced a particular product structure on three-dimensional Lorentzian Lie
groups and we computed canonical connections and Kobayashi-Nomizu connections and their curvature on three-dimensional Lorentzian
Lie groups with this product structure. We defined algebraic Ricci solitons associated to canonical connections and Kobayashi-Nomizu
connections. We classified algebraic Ricci solitons associated to canonical connections and Kobayashi-Nomizu connections on three-
dimensional Lorentzian Lie groups with this product structure. In this paper, we classify affine Ricci solitons associated to canonical
connections and Kobayashi-Nomizu connections and perturbed canonical connections and perturbed Kobayashi-Nomizu connections on
three-dimensional Lorentzian Lie groups with this product structure.

In Section 2, we recall the classification of three-dimensional Lorentzian Lie groups. In Section 3, we classify affine Ricci solitons associated
to canonical connections and Kobayashi-Nomizu connections on three-dimensional Lorentzian Lie groups with this product structure. In
Section 4, we classify affine Ricci solitons associated to perturbed canonical connections and perturbed Kobayashi-Nomizu connections on
three-dimensional Lorentzian Lie groups with this product structure.

2. THREE-DIMENSIONAL LORENTZIAN LIE GROUPS

In this section, we recall the classification of three-dimensional Lorentzian Lie groups in [4,5](also see Theorems 2.1 and 2.2 in [2]).

Theorem 2.1. Let (G, g) be a three-dimensional connected unimodular Lie group, equipped with a left-invariant Lorentzian metric. Then there
exists a pseudo-orthonormal basis {e1, e2, e3} with e3 timelike such that the Lie algebra of G is one of the following:

(g1):
[e1, e2] = αe1 − βe3, [e1, e3] = −αe1 − βe2, [e2, e3] = βe1 + αe2 + αe3, α �= 0. (2.1)

(g2):
[e1, e2] = γ e2 − βe3, [e1, e3] = −βe2 − γ e3, [e2, e3] = αe1, γ �= 0. (2.2)

(g3):
[e1, e2] = −γ e3, [e1, e3] = −βe2, [e2, e3] = αe1. (2.3)

(g4):
[e1, e2] = −e2 + (2η − β)e3, η = 1 or − 1, [e1, e3] = −βe2 + e3, [e2, e3] = αe1. (2.4)

Theorem 2.2. Let (G, g) be a three-dimensional connected non-unimodular Lie group, equipped with a left-invariant Lorentzian metric. Then
there exists a pseudo-orthonormal basis {e1, e2, e3} with e3 timelike such that the Lie algebra of G is one of the following:

(g5):
[e1, e2] = 0, [e1, e3] = αe1 + βe2, [e2, e3] = γ e1 + δe2, α + δ �= 0, αγ + βδ = 0. (2.5)

(g6):
[e1, e2] = αe2 + βe3, [e1, e3] = γ e2 + δe3, [e2, e3] = 0, α + δ �= 0, αγ − βδ = 0. (2.6)

(g7):
[e1, e2] = −αe1 − βe2 − βe3, [e1, e3] = αe1 + βe2 + βe3, [e2, e3] = γ e1 + δe2 + δe3, α + δ �= 0, αγ = 0. (2.7)

3. AFFINE RICCI SOLITONS ASSOCIATED TO CANONICAL CONNECTIONS
AND KOBAYASHI-NOMIZU CONNECTIONS ON THREE-DIMENSIONAL
LORENTZIAN LIE GROUPS

Throughout this paper, we shall by {Gi}i=1,...,7, denote the connected, simply connected three-dimensional Lie group equipped with a
left-invariant Lorentzian metric g and having Lie algebra {g}i=1,...,7. Let ∇ be the Levi-Civita connection of Gi and R its curvature tensor,
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taken with the convention

R(X, Y)Z = ∇X∇Y Z − ∇Y∇XZ − ∇[X,Y]Z. (3.1)

The Ricci tensor of (Gi, g) is defined by

ρ(X, Y) = −g(R(X, e1)Y , e1) − g(R(X, e2)Y , e2) + g(R(X, e3)Y , e3), (3.2)

where {e1, e2, e3} is a pseudo-orthonormal basis, with e3 timelike. We define a product structure J on Gi by

Je1 = e1, Je2 = e2, Je3 = −e3, (3.3)

then J2 = id and g(Jej, Jej) = g(ej, ej). By [7], we define the canonical connection and the Kobayashi-Nomizu connection as follows:

∇0
XY = ∇XY − 1

2
(∇XJ)JY , (3.4)

∇1
XY = ∇0

XY − 1
4
[(∇Y J)JX − (∇JY J)X]. (3.5)

We define

R0(X, Y)Z = ∇0
X∇0

Y Z − ∇0
Y∇0

XZ − ∇0[X,Y]Z, (3.6)

R1(X, Y)Z = ∇1
X∇1

Y Z − ∇1
Y∇1

XZ − ∇1[X,Y]Z. (3.7)

The Ricci tensors of (Gi, g) associated to the canonical connection and the Kobayashi-Nomizu connection are defined by

ρ0(X, Y) = −g(R0(X, e1)Y , e1) − g(R0(X, e2)Y , e2) + g(R0(X, e3)Y , e3), (3.8)
ρ1(X, Y) = −g(R1(X, e1)Y , e1) − g(R1(X, e2)Y , e2) + g(R1(X, e3)Y , e3). (3.9)

Let

ρ̃0(X, Y) = ρ0(X, Y) + ρ0(Y , X)

2
, (3.10)

and

ρ̃1(X, Y) = ρ1(X, Y) + ρ1(Y , X)

2
. (3.11)

Since (LV g)(Y , Z) := g(∇Y V , Z) + g(Y , ∇ZV), we let

(Lj
V g)(Y , Z) := g(∇ j

Y V , Z) + g(Y , ∇ j
ZV), (3.12)

for j = 0, 1 and vector fields V , Y , Z.

Definition 3.1. (Gi, g, J) is called the affine Ricci soliton associated to the connection ∇0 if it satisfies

(L0
V g)(Y , Z) + 2ρ̃0(Y , Z) + 2λg(Y , Z) = 0 (3.13)

where λ is a real number and V = λ1e1 + λ2e2 + λ3e3 and λ1, λ2, λ3 are real numbers. (Gi, g, J) is called the affine Ricci soliton associated to
the connection ∇1 if it satisfies

(L1
V g)(Y , Z) + 2ρ̃1(Y , Z) + 2λg(Y , Z) = 0 (3.14)

By (2.25) in [19], we have for (G1, g, J, ∇0)

ρ̃0(e1, e1) = −
(

α2 + β2

2

)
, ρ̃0(e1, e2) = 0, (3.15)

ρ̃0(e1, e3) = αβ

4
, ρ̃0(e2, e2) = −

(
α2 + β2

2

)
,

ρ̃0(e2, e3) = α2

2
, ρ̃0(e3, e3) = 0.

By Lemma 2.4 in [19] and (3.12), we have for (G1, g, J, ∇0, V)

(L0
V g)(e1, e1) = 2λ2α, (L0

V g)(e1, e2) = −λ1α (3.16)
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(L0
V g)(e1, e3) = −β

2
λ2, (L0

V g)(e2, e2) = 0,

(L0
V g)(e2, e3) = β

2
λ1, (L0

V g)(e3, e3) = 0.

If (G1, g, J, V) is an affine Ricci soliton associated to the connection ∇0, then by (3.13), we have⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2λ2α − 2α2 − β2 + 2λ = 0,
λ1α = 0,
−βλ2 + αβ = 0,
−2α2 − β2 + 2λ = 0,
β
2 λ1 + α2 = 0,
λ = 0.

(3.17)

Solve (3.17), we have

Theorem 3.2. (G1, g, J, V) is not an affine Ricci soliton associated to the connection ∇0.

By (2.33) in [19], we have for (G1, g, J, ∇1)

ρ̃1(e1, e1) = − (
α2 + β2) , ρ̃1(e1, e2) = αβ , (3.18)

ρ̃1(e1, e3) = −αβ

2
, ρ̃1(e2, e2) = − (

α2 + β2) ,

ρ̃1(e2, e3) = α2

2
, ρ̃1(e3, e3) = 0.

By Lemma 2.8 in [19] and (3.12), we have for (G1, g, J, ∇1, V)

(L1
V g)(e1, e1) = 2λ2α, (L1

V g)(e1, e2) = −λ1α, (3.19)
(L1

V g)(e1, e3) = λ1α − βλ2, (L1
V g)(e2, e2) = 0,

(L1
V g)(e2, e3) = βλ1 − αλ2 − αλ3, (L1

V g)(e3, e3) = 0.

If (G1, g, J, V) is an affine Ricci soliton associated to the connection ∇1, then by (3.14), we have⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λ2α − α2 − β2 + λ = 0,
−λ1α + 2αβ = 0,
λ1α − βλ2 − αβ = 0,
−α2 − β2 + λ = 0,
βλ1 − αλ2 − αλ3 + α2 = 0,
λ = 0.

(3.20)

Solve (3.20), we have

Theorem 3.3. (G1, g, J, V) is not an affine Ricci soliton associated to the connection ∇1.

By (2.44) in [19], we have for (G2, g, J, ∇0)

ρ̃0(e1, e1) = −
(

γ 2 + αβ

2

)
, ρ̃0(e1, e2) = 0, (3.21)

ρ̃0(e1, e3) = 0, ρ̃0(e2, e2) = −
(

γ 2 + αβ

2

)
,

ρ̃0(e2, e3) = βγ

2
− αγ

4
, ρ̃0(e3, e3) = 0.

By Lemma 2.14 in [19] and (3.12), we have for (G2, g, J, ∇0, V)

(L0
V g)(e1, e1) = 0, (L0

V g)(e1, e2) = λ2γ (3.22)

(L0
V g)(e1, e3) = −α

2
λ2, (L0

V g)(e2, e2) = −2γ λ1,

(L0
V g)(e2, e3) = α

2
λ1, (L0

V g)(e3, e3) = 0.
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If (G2, g, J, V) is an affine Ricci soliton associated to the connection ∇0, then by (3.13), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
(
γ 2 + αβ

2

)
+ λ = 0,

λ2γ = 0,
αλ2 = 0,
−γ λ1 −

(
γ 2 + αβ

2

)
+ λ = 0,

α
2 λ1 + 2

(
βγ
2 − αγ

4

)
= 0,

λ = 0.

(3.23)

Solve (3.23), we have

Theorem 3.4. (G2, g, J, V) is not an affine Ricci soliton associated to the connection ∇0.

By (2.54) in [19], we have for (G2, g, J, ∇1)

ρ̃1(e1, e1) = − (
β2 + γ 2) , ρ̃1(e1, e2) = 0, (3.24)

ρ̃1(e1, e3) = 0, ρ̃1(e2, e2) = − (
γ 2 + αβ

)
,

ρ̃1(e2, e3) = −αγ

2
, ρ̃1(e3, e3) = 0.

By Lemma 2.18 in [19] and (3.12), we have for (G2, g, J, ∇1, V)

(L1
V g)(e1, e1) = 0, (L1

V g)(e1, e2) = λ2γ , (3.25)
(L1

V g)(e1, e3) = −αλ2 + γ λ3, (L1
V g)(e2, e2) = −2γ λ1,

(L1
V g)(e2, e3) = λ1β , (L1

V g)(e3, e3) = 0.

If (G2, g, J, V) is an affine Ricci soliton associated to the connection ∇1, then by (3.14), we have⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−β2 − γ 2 + λ = 0,
λ2γ = 0,
−αλ2 + γ λ3 = 0,
−γ λ1 − (

γ 2 + αβ
) + λ = 0,

λ1β − αγ = 0,
λ = 0.

(3.26)

Solve (3.26), we have

Theorem 3.5. (G2, g, J, V) is not an affine Ricci soliton associated to the connection ∇1.

By (2.64) in [19], we have for (G3, g, J, ∇0)

ρ̃0(e1, e1) = −γ a3, ρ̃0(e1, e2) = 0, (3.27)
ρ̃0(e1, e3) = 0, ρ̃0(e2, e2) = −γ a3,
ρ̃0(e2, e3) = 0, ρ̃0(e3, e3) = 0,

where a3 = 1
2 (α + β − γ ). By Lemma 2.24 in [19] and (3.12), we have for (G3, g, J, ∇0, V)

(L0
V g)(e1, e1) = 0, (L0

V g)(e1, e2) = 0, (3.28)
(L0

V g)(e1, e3) = −a3λ2, (L0
V g)(e2, e2) = 0,

(L0
V g)(e2, e3) = a3λ1, (L0

V g)(e3, e3) = 0.

If (G3, g, J, V) is an affine Ricci soliton associated to the connection ∇0, then by (3.13), we have⎧⎪⎪⎨
⎪⎪⎩

γ a3 = 0,
λ2a3 = 0,
λ1a3 = 0,
λ = 0.

(3.29)

Solve (3.29), we have
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Theorem 3.6. (G3, g, J, V) is an affine Ricci soliton associated to the connection ∇0 if and only if

(i) λ = 0, α + β − γ = 0,
(ii) λ = 0, α + β − γ �= 0, γ = λ1 = λ2 = 0.

By (2.69) in [19], we have for (G3, g, J, ∇1)

ρ̃1(e1, e1) = γ (a1 − a3), ρ̃1(e1, e2) = 0, (3.30)
ρ̃1(e1, e3) = 0, ρ̃1(e2, e2) = −γ (a2 + a3),
ρ̃1(e2, e3) = 0, ρ̃1(e3, e3) = 0,

where a1 = 1
2 (α − β − γ ), a2 = 1

2 (α − β + γ ). By Lemma 2.27 in [19] and (3.12), we have for (G3, g, J, ∇1, V)

(L1
V g)(e1, e1) = 0, (L1

V g)(e1, e2) = 0, (3.31)
(L1

V g)(e1, e3) = −(a2 + a3)λ2, (L1
V g)(e2, e2) = 0,

(L1
V g)(e2, e3) = λ1(a3 − a1), (L1

V g)(e3, e3) = 0.

If (G3, g, J, V) is an affine Ricci soliton associated to the connection ∇1, then by (3.14), we have⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ (a1 − a3) + λ = 0,
(a2 + a3)λ2 = 0,
−γ (a2 + a3) + λ = 0,
λ1(a3 − a1) = 0,
λ = 0.

(3.32)

Solve (3.32), we have

Theorem 3.7. (G3, g, J, V) is an affine Ricci soliton associated to the connection ∇1 if and only if the following statements hold true

(i) λ = 0, γ �= 0, α = β = 0,
(ii) λ = 0, γ = 0, αλ2 = 0, λ1β = 0.

By (2.81) in [19], we have for (G4, g, J, ∇0)

ρ̃0(e1, e1) = (2η − β)b3 − 1, ρ̃0(e1, e2) = 0, (3.33)
ρ̃0(e1, e3) = 0, ρ̃0(e2, e2) = (2η − β)b3 − 1,

ρ̃0(e2, e3) = b3 − β

2
, ρ̃0(e3, e3) = 0,

where b3 = α
2 + η. By Lemma 2.32 in [19] and (3.12), we have for (G4, g, J, ∇0, V)

(L0
V g)(e1, e1) = 0, (L0

V g)(e1, e2) = −λ2, (3.34)
(L0

V g)(e1, e3) = −b3λ2, (L0
V g)(e2, e2) = 2λ1,

(L0
V g)(e2, e3) = b3λ1, (L0

V g)(e3, e3) = 0.

If (G4, g, J, V) is an affine Ricci soliton associated to the connection ∇0, then by (3.13), we have⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(2η − β)b3 − 1 + λ = 0,
λ2 = 0,
λ1 + (2η − β)b3 − 1 + λ = 0,
λ1b3 + b3 − β = 0,
λ = 0.

(3.35)

Solve (3.35), we have

Theorem 3.8. (G4, g, J, V) is an affine Ricci soliton associated to the connection ∇0 if and only if λ = λ1 = λ2 = 0, α = 0, β = η.

By (2.89) in [19], we have for (G4, g, J, ∇1)

ρ̃1(e1, e1) = −[1 + (β − 2η)(b3 − b1)], ρ̃1(e1, e2) = 0, (3.36)
ρ̃1(e1, e3) = 0, ρ̃1(e2, e2) = −[1 + (β − 2η)(b2 + b3)],
ρ̃1(e2, e3) = α + b3 − b1 − β

2
, ρ̃1(e3, e3) = 0,
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where b1 = α
2 + η − β , b2 = α

2 − η. By Lemma 2.36 in [19] and (3.12), we have for (G4, g, J, ∇1, V)

(L1
V g)(e1, e1) = 0, (L1

V g)(e1, e2) = −λ2, (3.37)
(L1

V g)(e1, e3) = −(b2 + b3)λ2 − λ3, (L1
V g)(e2, e2) = 2λ1,

(L1
V g)(e2, e3) = λ1(b3 − b1), (L1

V g)(e3, e3) = 0.

If (G4, g, J, V) is an affine Ricci soliton associated to the connection ∇1, then by (3.14), we have⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−[1 + (β − 2η)(b3 − b1)] + λ = 0,
λ2 = 0,
−(b2 + b3)λ2 − λ3 = 0,
λ1 − [1 + (β − 2η)(b2 + b3)] + λ = 0,
λ1(b3 − b1) + (α + b3 − b1 − β) = 0,
λ = 0.

(3.38)

Solve (3.38), we have

Theorem 3.9. (G4, g, J, V) is not an affine Ricci soliton associated to the connection ∇1.

By (3.5) in [19], we have for (G5, g, J, ∇0), ρ̃0(ei, ej) = 0, for 1 ≤ i, j ≤ 3. By Lemma 3.3 in [19] and (3.12), we have for (G5, g, J, ∇0, V)

(L0
V g)(e1, e1) = 0, (L0

V g)(e1, e2) = 0, (3.39)

(L0
V g)(e1, e3) = β − γ

2
λ2, (L0

V g)(e2, e2) = 0,

(L0
V g)(e2, e3) = −β − γ

2
λ1, (L0

V g)(e3, e3) = 0.

If (G5, g, J, V) is an affine Ricci soliton associated to the connection ∇0, then by (3.13), we have⎧⎨
⎩

λ = 0,
(β − γ )λ2 = 0,
(β − γ )λ1 = 0,

(3.40)

Solve (3.40), we have

Theorem 3.10. (G5, g, J, V) is an affine Ricci soliton associated to the connection ∇0 if and only if one of the following cases occurs

(i) λ = β = γ = 0, α + δ �= 0.
(ii) λ = 0, β �= γ , λ1 = λ2 = 0, α + δ �= 0, αγ + βδ = 0.

By Lemma 3.7 in [19], we have for (G5, g, J, ∇1), ρ̃1(ei, ej)= 0, for 1 ≤ i, j ≤ 3. By Lemma 3.6 in [19] and (3.12), we have for (G5, g, J, ∇1, V)

(L1
V g)(e1, e1) = 0, (L1

V g)(e1, e2) = 0, (3.41)
(L1

V g)(e1, e3) = −αλ1 − γ λ2, (L1
V g)(e2, e2) = 0,

(L1
V g)(e2, e3) = −βλ1 − δλ2, (L1

V g)(e3, e3) = 0.

If (G5, g, J, V) is an affine Ricci soliton associated to the connection ∇1, then by (3.14), we have⎧⎨
⎩

λ = 0,
αλ1 + γ λ2 = 0,
βλ1 + δλ2 = 0.

(3.42)

Solve (3.42), we have

Theorem 3.11. (G5, g, J, V) is an affine Ricci soliton associated to the connection ∇1 if and only if the following statements hold true

(i) λ = λ1 = λ2 = 0,
(ii) λ = 0, λ1 �= 0, λ2 = 0, α = β = 0, δ �= 0,
(iii) λ = 0, λ1 = 0, λ2 �= 0, δ = γ = 0, α �= 0.

By (3.18) in [19], we have for (G6, g, J, ∇0)

ρ̃0(e1, e1) = 1
2
β(β − γ ) − α2, ρ̃0(e1, e2) = 0, (3.43)
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ρ̃0(e1, e3) = 0, ρ̃0(e2, e2) = 1
2
β(β − γ ) − α2,

ρ̃0(e2, e3) = 1
2
[−γα + 1

2
δ(β − γ )], ρ̃0(e3, e3) = 0.

By Lemma 3.11 in [19] and (3.12), we have for (G6, g, J, ∇0, V)

(L0
V g)(e1, e1) = 0, (L0

V g)(e1, e2) = αλ2, (3.44)

(L0
V g)(e1, e3) = γ − β

2
λ2, (L0

V g)(e2, e2) = −2αλ1,

(L0
V g)(e2, e3) = β − γ

2
λ1, (L0

V g)(e3, e3) = 0.

If (G6, g, J, V) is an affine Ricci soliton associated to the connection ∇0, then by (3.13), we have⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2 β(β − γ ) − α2 + λ = 0,
αλ2 = 0,
(γ − β)λ2 = 0,
−αλ1 + 1

2β(β − γ ) − α2 + λ = 0,
β−γ

2 λ1 − γα + 1
2 δ(β − γ ) = 0,

λ = 0.

(3.45)

Solve (3.45), we have

Theorem 3.12. (G6, g, J, V) is an affine Ricci soliton associated to the connection ∇0 if and only if

(i) λ = λ1 = λ2 = γ = δ = 0, α �= 0, α2 = 1
2 β2,

(ii) λ = λ1 = λ2 = α = β = γ = 0, δ �= 0,
(iii) λ = λ2 = 0, λ1 �= 0, α = β = γ = 0, δ �= 0,
(iv) λ = λ2 = 0, λ1 �= 0, α = β = 0, δ �= 0, γ �= 0, λ1 = −δ,
(v) λ = α = β = γ = 0, λ2 �= 0, δ �= 0.

By (3.23) in [19], we have for (G6, g, J, ∇1)

ρ̃1(e1, e1) = −(α2 + βγ ), ρ̃1(e1, e2) = 0, (3.46)
ρ̃1(e1, e3) = 0, ρ̃1(e2, e2) = −α2,
ρ̃1(e2, e3) = 0, ρ̃1(e3, e3) = 0.

By Lemma 3.15 in [19] and (3.12), we have for (G6, g, J, ∇1, V)

(L1
V g)(e1, e1) = 0, (L1

V g)(e1, e2) = λ2α, (3.47)
(L1

V g)(e1, e3) = −δλ3, (L1
V g)(e2, e2) = −2αλ1,

(L1
V g)(e2, e3) = −γ λ1, (L1

V g)(e3, e3) = 0.

If (G6, g, J, V) is an affine Ricci soliton associated to the connection ∇1, then by (3.14), we have⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−(α2 + βγ ) + λ = 0,
λ2α = 0,
δλ3 = 0,
−αλ1 − α2 + λ = 0,
γ λ1 = 0,
λ = 0.

(3.48)

Solve (3.48), we have

Theorem 3.13. (G6, g, J, V) is an affine Ricci soliton associated to the connection ∇1 if and only if the following statements hold true

(i) λ = α = β = λ1 = λ3 = 0, δ �= 0,
(ii) λ = α = β = γ = λ3 = 0, δ �= 0, λ1 �= 0.

By (3.34) in [19], we have for (G7, g, J, ∇0)

ρ̃0(e1, e1) = −
(

α2 + βγ

2

)
, ρ̃0(e1, e2) = 0, (3.49)
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ρ̃0(e1, e3) = −1
2

(
γα + δγ

2

)
, ρ̃0(e2, e2) = −(α2 + βγ

2
),

ρ̃0(e2, e3) = 1
2

(
α2 + βγ

2

)
, ρ̃0(e3, e3) = 0.

By Lemma 3.20 in [19] and (3.12), we have for (G7, g, J, ∇0, V)

(L0
V g)(e1, e1) = −2αλ2, (L0

V g)(e1, e2) = αλ1 − βλ2, (3.50)

(L0
V g)(e1, e3) = (β − γ

2
)λ2, (L0

V g)(e2, e2) = 2βλ1,

(L0
V g)(e2, e3) = (

γ

2
− β)λ1, (L0

V g)(e3, e3) = 0.

If (G7, g, J, V) is an affine Ricci soliton associated to the connection ∇0, then by (3.13), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−αλ2 −
(
α2 + βγ

2

)
+ λ = 0,

αλ1 − βλ2 = 0,(
β − γ

2
)
λ2 −

(
γα + δγ

2

)
= 0,

βλ1 −
(
α2 + βγ

2

)
+ λ = 0,( γ

2 − β
)
λ1 + α2 + βγ

2 = 0,
λ = 0.

(3.51)

Solve (3.51), we have

Theorem 3.14. (G7, g, J, V) is an affine Ricci soliton associated to the connection ∇0 if and only if the following statements hold true

(i) λ = α = β = γ = 0, δ �= 0,
(ii) λ = α = β = 0, γ �= 0, λ1 = 0, λ2 = −δ, δ �= 0,
(iii) λ = α = γ = λ1 = λ2 = 0, β �= 0.

By (3.42) in [19], we have for (G7, g, J, ∇1)

ρ̃1(e1, e1) = −α2, ρ̃1(e1, e2) = 1
2
(βδ − αβ), (3.52)

ρ̃1(e1, e3) = β(α + δ), ρ̃1(e2, e2) = −(α2 + β2 + βγ ),

ρ̃1(e2, e3) = 1
2
(βγ + αδ + 2δ2), ρ̃1(e3, e3) = 0.

By Lemma 3.24 in [19] and (3.12), we have for (G7, g, J, ∇1, V)

(L1
V g)(e1, e1) = −2αλ2, (L1

V g)(e1, e2) = αλ1 − βλ2, (3.53)
(L1

V g)(e1, e3) = −αλ1 − γ λ2 − βλ3, (L1
V g)(e2, e2) = 2βλ1,

(L1
V g)(e2, e3) = −βλ1 − δλ2 − δλ3, (L1

V g)(e3, e3) = 0.

If (G7, g, J, V) is an affine Ricci soliton associated to the connection ∇1, then by (3.14), we have⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−αλ2 − α2 + λ = 0,
αλ1 − βλ2 + βδ − αβ = 0,
−αλ1 − γ λ2 − βλ3 + 2β(α + δ) = 0,
βλ1 − (α2 + β2 + βγ ) + λ = 0,
−βλ1 − δλ2 − δλ3 + βγ + αδ + 2δ2 = 0,
λ = 0.

(3.54)

Solve (3.54), we have

Theorem 3.15. (G7, g, J, V) is an affine Ricci soliton associated to the connection ∇1 if and only if

(i) λ = α = β = γ = 0, λ2 + λ3 − 2δ = 0, δ �= 0,
(ii) λ = α = β = 0, γ �= 0, λ2 = 0, λ3 = 2δ, δ �= 0,
(iii) λ = α = 0, δ �= 0, β �= 0, λ1 = β + γ , λ2 = δ, λ3 = −γ δ+2βδ

β
, γ = β(β2+δ2)

δ2 .
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4. AFFINE RICCI SOLITONS ASSOCIATED TO PERTURBED CANONICAL CONNECTIONS
AND PERTURBED KOBAYASHI-NOMIZU CONNECTIONS ON THREE-DIMENSIONAL
LORENTZIAN LIE GROUPS

We note that in our classifications in Section 2 always λ = 0. In order to get the affine Ricci soliton with non zero λ, we introduce perturbed
canonical connections and perturbed Kobayashi-Nomizu connections in the following. Let e∗

3 be the dual base of e3. We define on Gi=1,...,7

∇2
XY = ∇0

XY + λe∗
3(X)e∗

3(Y)e3, (4.1)
∇3

XY = ∇1
XY + λe∗

3(X)e∗
3(Y)e3, (4.2)

where λ is a non zero real number. Then
∇2

e3 e3 = λe3, ∇2
ei ej = ∇0

ei ej; (4.3)

∇3
e3 e3 = λe3, ∇3

ei ej = ∇1
ei ej. (4.4)

where i or j does not equal 3. We let

(Lj
V g)(Y , Z) := g(∇ j

Y V , Z) + g(Y , ∇ j
ZV), (4.5)

for j = 2, 3 and vector fields V , Y , Z. Then we have for Gi=1,··· ,7

(L2
V g)(e3, e3) = −2λλ3, (L2

V g)(ej, ek) = (L0
V g)(ej, ek), (4.6)

(L3
V g)(e3, e3) = −2λλ3, (L3

V g)(ej, ek) = (L1
V g)(ej, ek), (4.7)

where j or k does not equal 3.

Definition 4.1. (Gi, g, J) is called the affine Ricci soliton associated to the connection ∇2 if it satisfies
(L2

V g)(Y , Z) + 2ρ̃2(Y , Z) + 2λg(Y , Z) = 0. (4.8)
(Gi, g, J) is called the affine Ricci soliton associated to the connection ∇3 if it satisfies

(L3
V g)(Y , Z) + 2ρ̃3(Y , Z) + 2λg(Y , Z) = 0. (4.9)

For (G1, ∇2), similar to (3.15), we have

ρ̃2(e2, e3) = α2 + λα

2
, ρ̃2(ej, ek) = ρ̃0(ej, ek), (4.10)

for the pair (j, k) �= (2, 3). If (G1, g, J, V) is an affine Ricci soliton associated to the connection ∇2, then by (4.8), we have⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2λ2α − 2α2 − β2 + 2λ = 0,
λ1α = 0,
−βλ2 + αβ = 0,
−2α2 − β2 + 2λ = 0,
β
2 λ1 + α2 + λα = 0,
λλ3 + λ = 0.

(4.11)

Solve (4.11), we have

Theorem 4.2. (G1, g, J, V) is an affine Ricci soliton associated to the connection ∇2 if and only if λ1 = λ2 = 0, λ3 = −λ, α = −λ,
β = 0, λ = λ

2.

For (G1, ∇3), similar to (3.18), we have

ρ̃3(e2, e3) = α2 + λα

2
, ρ̃3(ej, ek) = ρ̃1(ej, ek), (4.12)

for the pair (j, k) �= (2, 3). If (G1, g, J, V) is an affine Ricci soliton associated to the connection ∇3, then by (4.9), we have⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λ2α − α2 − β2 + λ = 0,
−λ1α + 2αβ = 0,
λ1α − βλ2 − αβ = 0,
−α2 − β2 + λ = 0,
βλ1 − αλ2 − αλ3 + α2 + λα = 0,
λλ3 + λ = 0.

(4.13)

Solve (4.13), we have
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Theorem 4.3. (G1, g, J, V) is not an affine Ricci soliton associated to the connection ∇3.

Proof. By the first and second and fourth equations in (4.13) and α �= 0, we get λ2 = 0, λ1 = 2β , λ = α2 + β2, By the third equation
in (4.13), we get λ1 = λ2 = β = 0, λ = α2. By the fifth equation in (4.13), we get λ3 = α + λ. By the sixth equation in (4.13), we get
α2 + λα + λ

2 = 0. Then λ = α = 0, this is a contradiction.

For (G2, ∇2), similar to (3.21), we have

ρ̃2(e1, e3) = −γ λ

2
, ρ̃2(ej, ek) = ρ̃0(ej, ek), (4.14)

for the pair (j, k) �= (1, 3). If (G2, g, J, V) is an affine Ricci soliton associated to the connection ∇2, then by (4.8), we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
(
γ 2 + αβ

2

)
+ λ = 0,

λ2γ = 0,
αλ2 + 2γ λ = 0,
−γ λ1 −

(
γ 2 + αβ

2

)
+ λ = 0,

α
2 λ1 + 2

(
βγ
2 − αγ

4

)
= 0,

λλ3 + λ = 0.

(4.15)

Solve (4.15), we have

Theorem 4.4. (G2, g, J, V) is not an affine Ricci soliton associated to the connection ∇2.

For (G2, ∇3), similar to (3.24), we have

ρ̃3(e1, e3) = −γ λ

2
, ρ̃3(ej, ek) = ρ̃1(ej, ek), (4.16)

for the pair (j, k) �= (1, 3). If (G2, g, J, V) is an affine Ricci soliton associated to the connection ∇3, then by (4.9), we have

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−β2 − γ 2 + λ = 0,
λ2γ = 0,
−αλ2 + γ λ3 − γ λ = 0,
−γ λ1 − (

γ 2 + αβ
) + λ = 0,

λ1β − αγ = 0,
λλ3 + λ = 0.

(4.17)

Solve (4.17), we have

Theorem 4.5. (G2, g, J, V) is not an affine Ricci soliton associated to the connection ∇3.

For (G3, ∇2), we have ρ̃2(ej, ek) = ρ̃0(ej, ek), for any pairs (j, k). If (G3, g, J, V) is an affine Ricci soliton associated to the connection ∇2, then
by (4.8), we have

⎧⎪⎪⎨
⎪⎪⎩

−γ a3 + λ = 0,
λ2a3 = 0,
λ1a3 = 0,
λλ3 + λ = 0.

(4.18)

Solve (4.18), we have

Theorem 4.6. (G3, g, J, V) is an affine Ricci soliton associated to the connection ∇2 if and only if the following statements hold true

(i) a3 �= 0, λ1 = λ2 = 0, λ = γ a3, λ3 = − γ a3
λ

,
(ii) a3 = λ = λ3 = 0.
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For (G3, ∇3), we have ρ̃3(ej, ek) = ρ̃1(ej, ek), for any pairs (j, k). If (G3, g, J, V) is an affine Ricci soliton associated to the connection ∇3, then
by (4.9), we have ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γ (a1 − a3) + λ = 0,
(a2 + a3)λ2 = 0,
−γ (a2 + a3) + λ = 0,
λ1(a3 − a1) = 0,
λλ3 + λ = 0.

(4.19)

Solve (4.19), we have

Theorem 4.7. (G3, g, J, V) is an affine Ricci soliton associated to the connection ∇3 if and only if one of the following cases occurs

(i) γ = λ = λ3 = 0, αλ2 = 0, βλ1 = 0,
(ii) γ �= 0, α = β = λ = λ3 = 0,
(iii) γ �= 0, α = β �= 0, λ1 = λ2 = 0, λ = αγ , λ3 = −αγ

λ
.

For (G4, ∇2), we have

ρ̃2(e1, e3) = λ

2
, ρ̃2(ej, ek) = ρ̃0(ej, ek), (4.20)

for the pair (j, k) �= (1, 3). If (G4, g, J, V) is an affine Ricci soliton associated to the connection ∇2, then by (4.8), we have⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(2η − β)b3 − 1 + λ = 0,
λ2 = 0,
−b3λ2 + λ = 0,
λ1 + (2η − β)b3 − 1 + λ = 0,
λ1b3 + b3 − β = 0,
λλ3 + λ = 0.

(4.21)

Solve (4.21), we have

Theorem 4.8. (G4, g, J, V) is not an affine Ricci soliton associated to the connection ∇2.

For (G4, ∇3), we have

ρ̃3(e1, e3) = λ

2
, ρ̃3(ej, ek) = ρ̃1(ej, ek), (4.22)

for the pair (j, k) �= (1, 3). If (G4, g, J, V) is an affine Ricci soliton associated to the connection ∇3, then by (4.9), we have⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−[1 + (β − 2η)(b3 − b1)] + λ = 0,
λ2 = 0,
−(b2 + b3)λ2 − λ3 + λ = 0,
λ1 − [1 + (β − 2η)(b2 + b3)] + λ = 0,
λ1(b3 − b1) + (α + b3 − b1 − β) = 0,
λλ3 + λ = 0.

(4.23)

Solve (4.23), we have

Theorem 4.9. (G4, g, J, V) is not an affine Ricci soliton associated to the connection ∇3.

For (G5, g, J, ∇2), ρ̃2(ei, ej) = 0, for 1 ≤ i, j ≤ 3. If (G5, g, J, V) is an affine Ricci soliton associated to the connection ∇2, then by (4.8), we
have ⎧⎪⎪⎨

⎪⎪⎩
λ = 0,
(β − γ )λ2 = 0,
(β − γ )λ1 = 0,
λλ3 + λ = 0.

(4.24)

Solve (4.24), we have

Theorem 4.10. (G5, g, J, V) is an affine Ricci soliton associated to the connection ∇2 if and only if the following statements hold true

(i) γ �= β, λ = λ1 = λ2 = λ3 = 0, α + δ �= 0, αγ + βδ = 0,
(ii) λ = β = γ = 0, α + δ �= 0, λ3 = 0.
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For (G5, g, J, ∇3), ρ̃3(ei, ej) = 0, for 1 ≤ i, j ≤ 3. If (G5, g, J, V) is an affine Ricci soliton associated to the connection ∇3, then by (4.9),
we have ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
λ = 0,
αλ1 + γ λ2 = 0,
βλ1 + δλ2 = 0,
λλ3 + λ = 0.

(4.25)

Solve (4.25), we have

Theorem 4.11. (G5, g, J, V) is an affine Ricci soliton associated to the connection ∇3 if and only if

(i) λ = λ1 = λ2 = λ3 = 0,
(ii) λ = λ2 = λ3 = α = β = 0, λ1 �= 0, δ �= 0,
(iii) λ = 0, λ1 = λ3 = 0, λ2 �= 0, δ = γ = 0, α �= 0.

For (G6, ∇2), we have

ρ̃2(e1, e3) = δλ

2
, ρ̃2(ej, ek) = ρ̃0(ej, ek), (4.26)

for the pair (j, k) �= (1, 3). If (G6, g, J, V) is an affine Ricci soliton associated to the connection ∇2, then by (4.8), we have⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
2 β(β − γ ) − α2 + λ = 0,
αλ2 = 0,
(γ − β)λ2 + 2δλ = 0,
−αλ1 + 1

2β(β − γ ) − α2 + λ = 0,
β−γ

2 λ1 − γα + 1
2 δ(β − γ ) = 0,

λλ3 + λ = 0.

(4.27)

Solve (4.27), we have

Theorem 4.12. (G6, g, J, V) is an affine Ricci soliton associated to the connection ∇2 if and only if the following statements hold true

(i) α = β = 0, δ �= 0, γ �= 0, λ = λ3 = 0, λ1 = −δ, λ2 = − 2δλ
γ

,
(ii) α �= 0, λ1 = λ2 = γ = δ = 0, λ = α2 − 1

2β2, λ3 = − λ

λ
.

For (G6, ∇3), we have

ρ̃3(e1, e3) = δλ

2
, ρ̃3(ej, ek) = ρ̃1(ej, ek), (4.28)

for the pair (j, k) �= (1, 3). If (G6, g, J, V) is an affine Ricci soliton associated to the connection ∇3, then by (4.9), we have⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−(α2 + βγ ) + λ = 0,
λ2α = 0,
−δλ3 + δλ = 0,
−αλ1 − α2 + λ = 0,
γ λ1 = 0,
λλ3 + λ = 0.

(4.29)

Solve (4.29), we have

Theorem 4.13. (G6, g, J, V) is an affine Ricci soliton associated to the connection ∇3 if and only if α �= 0, λ1 = λ2 = γ = δ = 0, λ = α2,
λ3 = −α2

λ
.

For (G7, ∇2), we have

ρ̃2(e1, e3) = 1
2
(βλ − αγ − δγ

2
), ρ̃2(e2, e3) = 1

2
(δλ + α2 + βγ

2
), ρ̃2(ej, ek) = ρ̃0(ej, ek), (4.30)
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for the pair (j, k) �= (1, 3), (2, 3). If (G7, g, J, V) is an affine Ricci soliton associated to the connection ∇2, then by (4.8), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−αλ2 −
(
α2 + βγ

2

)
+ λ = 0,

αλ1 − βλ2 = 0,(
β − γ

2
)
λ2 + βλ −

(
γα + δγ

2

)
= 0,

βλ1 −
(
α2 + βγ

2

)
+ λ = 0,( γ

2 − β
)
λ1 + δλ + α2 + βγ

2 = 0,
λλ3 + λ = 0.

(4.31)

Solve (4.31), we have

Theorem 4.14. (G7, g, J, V) is an affine Ricci soliton associated to the connection ∇2 if and only if one of the following cases occurs

(i) α = β = 0, γ �= 0, δ �= 0, λ = 0, λ1 = − 2δλ
γ

, λ2 = −δ, λ3 = 0,
(ii) α �= 0, λ1 = λ2 = β = γ = 0, λ = α2, δ �= 0, λ = −α2

δ
, λ3 = δ.

For (G7, ∇3), we have

ρ̃3(e1, e3) = αβ + βδ + βλ

2
, ρ̃3(e2, e3) = 1

2
(βγ + αδ + 2δ2 + δλ), ρ̃3(ej, ek) = ρ̃1(ej, ek), (4.32)

for the pair (j, k) �= (1, 3), (2, 3). If (G7, g, J, V) is an affine Ricci soliton associated to the connection ∇3, then by (4.9), we have⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−αλ2 − α2 + λ = 0,
αλ1 − βλ2 + βδ − αβ = 0,
−αλ1 − γ λ2 − βλ3 + 2β(α + δ + λ

2 ) = 0,
βλ1 − (α2 + β2 + βγ ) + λ = 0,
−βλ1 − δλ2 − δλ3 + βγ + αδ + 2δ2 + δλ = 0,
λλ3 + λ = 0.

(4.33)

Solve (4.33), we have

Theorem 4.15. (G7, g, J, V) is an affine Ricci soliton associated to the connection ∇3 if and only if the following statements hold true

(i) λ = α = β = γ = λ3 = 0, δ �= 0, λ2 = 2δ + λ,
(ii) α = β = λ = λ2 = λ3 = 0, γ �= 0, δ �= 0, λ = −2δ,
(iii) α = λ = λ3 = 0, β �= 0, δ �= 0, λ1 = β + γ , λ2 = δ, λ = γ δ−2βδ

β
, γ = β3+βδ2

δ2 ,
(iv) α �= 0, β = γ = δ = λ1 = λ2 = 0, λ = α2, λ3 = −α2

λ
,

(v) α �= 0, β = γ = λ1 = λ2 = 0, λ = α2, δ �= 0, λ3 = α + 2δ + λ, λ2 + (α + 2δ)λ + α2 = 0.

Proof. We know that αγ = 0 and α + δ �= 0.

Case i) α = 0, then δ �= 0. By (4.33), we have λ = λ3 = 0 and⎧⎪⎪⎨
⎪⎪⎩

β(λ2 − δ) = 0,
−γ λ2 + 2βδ + βλ = 0,
βλ1 − (β2 + βγ ) = 0,
−βλ1 − δλ2 + βγ + 2δ2 + δλ = 0.

(4.34)

Case i)-a) β = 0, then by (4.34), we have γ λ2 = 0 and λ2 = 2δ + λ.
Case i)-a)-1) γ = 0, we get (i).
Case i)-a)-2) γ �= 0, we get λ2 = 0 and λ = −2δ. So we have (ii).
Case i)-b) β �= 0, then by (4.34), we have λ1 = β + γ , λ2 = δ, λ = γ δ−2βδ

β
. By the fourth equation in (4.34), we get γ = β3+βδ2

δ2 and
this is (iii).

Case ii) α �= 0, so γ = 0.
Case ii)-a) β = 0, by (4.33), we get λ1 = λ2 = 0, λ = α2, δλ3 = αδ + 2δ2 + δλ, λ3 = −α2

λ
.

Case ii)-a)-1) δ = 0, we get (iv).
Case ii)-a)-2) δ �= 0, we get (v).
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Case ii)-b) β �= 0, we get αλ2 + βλ1 − β2 = 0 and αλ1 − βλ2 + β(δ − α) = 0. So get⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ1 = β − αβδ

α2+β2 ,
λ2 = β2δ

α2+β2 ,
λ = αβ2δ

α2+β2 + α2,
λ3 = λ + α + 2δ + α2δ

α2+β2 .

(4.35)

Using (4.35) and the fifth equation in (4.33), we get β2(α2 − αδ + δ2 + β2) + α2δ2 = 0, so we get β = 0 and this is a contradiction. So we
have no solutions in this case.
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ABSTRACT
In this paper, we first construct an integrable system whose solutions include the orthogonal Schur functions and the symplectic
Schur functions. We find that the orthogonal Schur functions and the symplectic Schur functions can be obtained by one kind
of Boson-Fermion correspondence which is slightly different from the classical one. Then, we construct a universal character
which satisfies the bilinear equation of a new infinite-dimensional integrable orthogonal UC hierarchy.
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1. INTRODUCTION

Boson-Fermion correspondence is well-known in mathematical physics [1,11]. Young diagrams and symmetric functions are of interest to
many researchers and have many applications in mathematics including combinatorics and representation theory [3,10]. There are many
relations between Boson-Fermion correspondence and symmetric functions.

The KP hierarchy [1] is one of the most important integrable hierarchies and it arises in many different fields of mathematics and physics
such as enumerative algebraic geometry, topological field and string theory. Schur functions have close relations with the τ -functions of
KP hierarchy. Schur functions give the characters of finite-dimensional irreducible representations of the general linear groups, see [3,10].
Schur functions can be realized from vertex operators as in Equation (6) of this paper, and these vertex operators can be used to construct
Fermions which act on Bosonic Fock space, see [7,11]. By replacing nxn by power sum, we find that the character of Young diagram in [11] is
the same with the Schur function obtained from the Jacobi-Trudi formula, which tells us that the Schur functions are solutions of differential
equations in the KP hierarchy, and the linear combinations of Schur functions with coefficients satisfying some relations (plücker relations)
are also τ -functions of the KP hierarchy. In [12,13], the author generalized the KP hierarchy to the UC (universal character) hierarchy, whose
τ -functions include universal characters [8].

The orthogonal and symplectic Schur functions are upgraded from Schur functions in the same setting [2]. Symplectic Schur functions
are equal to orthogonal Schur functions with the conjugate Young diagrams. Like Schur functions, the symplectic and orthogonal Schur
functions can also be realized from vertex operators as in Equation (19), and these vertex operators can also be used to construct Fermions.
Then there certainly exists an integrable system. In this paper, we will construct this integrable system, and show that the symplectic and
orthogonal Schur functions are its solutions.

This paper is arranged as follows. In Section 2, we will recall the definition of Schur function, its vertex operator realization, and the relations
between Schur functions and KP hierarchy. In Section 3, we will recall the definitions of orthogonal and symplectic Schur functions, their
respective vertex operator realization, then we will define an integrable system whose τ -function can be obtained from orthogonal and
symplectic Schur function. In Section 4, we will construct a method to calculate orthogonal and symplectic Schur functions from a different
kind of Boson-Fermion correspondence. In Section 5, we will construct the modified type of the integrable system which is constructed in
Section 3. In Section 6, we will consider the universal character and the corresponding UC hierarchy.

*Corresponding author: Email: wangna@henu.edu.cn

http://creativecommons.org/licenses/by-nc/4.0/
mailto:wangna@henu.edu.cn
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2. SCHUR FUNCTIONS, VERTEX OPERATOR AND THE KP HIERARCHY

Let x = (x1, x2, · · · ). The operators hn(x) are determined by the generating function:

eξ(x,k) :=
∞∑

n=0
hn(x)kn, where ξ(x, k) =

∞∑
n=1

xnkn (1)

and set hn(x) = 0 for n < 0. Note that if we replace ixi with the power sum pi = ∑
n xi

n, hn(x) is the complete homogeneous symmetric
function [10] ∑

i1≤i2≤···≤in

xi1 xi2 · · · xin . (2)

For Young diagrams λ = (λ1, λ2, · · · , λl), the Schur function Sλ = Sλ(x) is a polynomial in C[x] defined by the Jacobi-Trudi formula [8]:

Sλ(x) = det
(
hλi−i+j(x)

)
1≤i,j≤l . (3)

Introduce the following vertex operators

V+(k) =
∑
n∈Z

V+
n kn = eξ(x,k)e−ξ(∂̃x ,z−1), (4)

V−(k) =
∑
n∈Z

V−
n kn = e−ξ(x,k)eξ(∂̃x ,k−1). (5)

where ∂̃x = (∂x1 , 1
2∂x2 , · · · , 1

n∂xn , · · · ). The operators V+
i are raising operators for the Schur functions

Sλ(x) := V+
λ1

· · · V+
λl

· 1 (6)

where λ is a Young diagram (λ1, λ2, · · · , λl), and we denote Sλ(x) by Sλ for short.

Introduce Fermions ψ∗
j and ψj for any j ∈ Z + 1

2 as operators satisfying the relations

{ψj, ψk} = 0, {ψ∗
j , ψ∗

k } = 0, {ψ∗
j , ψk} = δj+k,0 (7)

where {A, B} = AB + BA. The generating functions of Fermions are

ψ(k) :=
∑

j∈Z+1/2
ψjk−j−1/2, ψ∗(k) :=

∑
j∈Z+1/2

ψ∗
j k−j−1/2.

The Fock representation space of Fermions is the space of Maya diagrams. A Maya diagram is made up of black and white stones lined up
along the real line with the convention that all the stones are black far away to the right, whereas all the stones are white far away to the left.
For example, the following is a Maya diagram

1
2

3
2

5
2

7
2

9
2

· · ·
− 1

2− 3
2− 5

2− 7
2

· · ·
(8)

By writing half integers u1, u2, · · · for the positions of the black stones, a Maya diagram is described as an increasing sequence of half integers

u = {un}n≥1 with u1 < u2 < u3 < · · · .

For example, the Maya diagram in (8) is denoted by

−3
2

, −1
2

,
3
2

,
7
2

,
9
2

, · · ·
Define the charge p of a Maya diagram as the number of white stones on the right half line minus the number of black stones on the left half
line. For example, the charge of Maya diagram in (8) is zero.

Let F be the vector space based by the set of Maya diagrams, which is called Fermionic Fock space. The basis vector is written as |u〉. In
particular,

|0〉 = |1
2

,
3
2

,
5
2

, · · · 〉.

The action of Fermions ψj and ψ∗
j for any j ∈ 1

2 + Z on Maya diagrams |u〉 is determined by the formulas

ψj|u〉 =
{

(−1)i−1| · · · , ui−1, ui+1, · · · 〉 if ui = −j for some i,
0 otherwise,

(9)
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ψ∗
j |u〉 =

{
(−1)i| · · · , ui, j, ui+1, · · · 〉 if ui < j < ui+1 for some i,
0 otherwise.

(10)

There are three vector spaces which are isomorphic to each other [11]: the polynomial ring C[x] = C[x1, x2, · · · ] of infinitely many variables
x = (x1, x2, · · · ) which is called the Bosonic Fock space, the charge zero part of the Fermionic Fock space F , and the vector space Y spanned
by Young diagrams. Therefore, the Maya diagram |u〉 can be written as

|u〉 = |λ, n〉 = |Sλ, n〉,

where n is the charge of |u〉. In the special case of n = 0, we also write the Maya diagram |u〉 as |λ〉.

Let f (z, x) ∈ C[z, z−1, x1, x2, · · · ]. Define operators

eKf (z, x) := zf (z, x), kH0 f (z, x) := f (kz, x). (11)

Define the generating functions [5,11]

Ṽ(k) :=
∑

j∈Z+ 1
2

Ṽjk−j− 1
2 = V+(k)eKkH0 , (12)

Ṽ∗(k) :=
∑

j∈Z+ 1
2

Ṽ∗
j k−j− 1

2 = V−(k)eKkH0 . (13)

It can be checked that

{Ṽi, Ṽj} = 0, {Ṽ∗
i , Ṽ∗

j } = 0, {Ṽi, Ṽ∗
j } = δi+j,0, (14)

that is, the operators Ṽi, Ṽ∗
j determine a representation of the algebra spanned by Fermions, see equations in (7).

Definition 2.1. For an unknown function τ = τ(x), the bilinear equation∑
j∈Z+ 1

2

Ṽ∗
j τ ⊗ Ṽ−jτ = 0 (15)

is called the KP hierarchy, see [5,11].

3. THE ORTHOGONAL SCHUR FUNCTION, THE SYMPLECTIC SCHUR FUNCTION,
VERTEX OPERATORS AND AN INTEGRABLE HIERARCHY

For a Young diagram λ = (λ1, · · · , λl), the orthogonal Schur function[6,9] is defined to be

SO
λ := det(hλi−i+j − hλi−i−j)1≤i,j≤l, (16)

where hn is the nth complete symmetric function of the form in equation (2). Define vertex operators

VO(z) := (1 − z2)eξ(x,z)e−ξ(∂̃x,z−1)e−ξ(∂̃x,z) (17)

V∗
O(z) := e−ξ(x,z)eξ(∂̃x,z−1)eξ(∂̃x,z) (18)

and let

VO(z) =
∑
n∈Z

VO
n zn, V∗

O(z) =
∑
n∈Z

VO∗
n zn.

Observe that this vertex operator VO(z) is the same as Vπ (z) for π = (2) in [2].

The operator VO
n is a raising operator of the orthogonal Schur function, i.e.,

SO
λ (x) = VO

λ1 VO
λ2 · · · VO

λl
· 1 (19)

for a partition λ = (λ1, λ2, · · · , λl).

Define the generating functions

XO(k) =
∑

j∈Z+ 1
2

XO
j k−j− 1

2 = VO(k)eKkH0 , (20)

XO∗(k) =
∑

j∈Z+ 1
2

XO∗
j k−j− 1

2 = V∗
O(k)eK kH0 . (21)
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It can be checked that

{XO
i , XO

j } = 0, {XO∗
i , XO∗

j } = 0, {XO
i , XO∗

j } = δi+j,0. (22)

Definition 3.1. For an unknown function τ = τ(x), the bilinear equation∑
j∈Z+ 1

2

XO∗
j τ ⊗ XO−jτ = 0 (23)

is called the orthogonal/symmplectic KP hierarchy, and denoted by OSKP hierarchy for short.

Equation (23) is equivalent to ∑
n+m=−1

VO∗
n τ ⊗ VO

mτ = 0. (24)

It is obvious that equation (24) can be rewritten as
1

2π i

∮
(1 − z2)eξ(x−x′ ,z)dzτ(x′ + [z−1] + [z])τ (x − [z−1] − [z]) = 0 (25)

with x = (x1, x2, · · · ) and x′ = (x′
1, x′

2, · · · ) being arbitrary parameters. Here the symbol [z] denotes (z, z2

2 , z3

3 , · · · ) and the integration
means taking the coefficient of 1

z of the integrand in the formal Laurent series expansion in z. Then the equation (25) is equivalent to

Res(1 − z2)eξ(x−x′ ,z)τ (x′ + [z−1] + [z])τ (x − [z−1] − [z]) = 0. (26)

Let us replace (x′, x) with (x + u, x − u) and consider the Taylor series expansion at x′ = x, i.e., expand with respect to u = (u1, u2, · · · ).
Hence, we obtain ∑

i−j+k=−1
Pi(−2u)Pj(∂̃u)Pk(∂̃u)τ (x + u)τ (x − u) −

∑
i−j+k=−3

Pi(−2u)Pj(∂̃u)Pk(∂̃u)τ (x + u)τ (x − u) = 0. (27)

By taking the coefficient of un = un1
1 un2

2 · · · , we get many bilinear equations. Taking the coefficient of 1 = u0, we get
∞∑

k=0
Pk+1(Dx)Pk(Dx)τ (x) · τ(x) −

∞∑
k=0

Pk+3(Dx)Pk(Dx)τ (x) · τ(x) = 0, (28)

where Dx = (Dx1 , 1
2 Dx2 , 1

3 Dx3 , · · · ). We see that every differential equation with respect to x contained in the orthogonal KP hierarchy is of
infinite order. This reflects the fact that the integrand of (25) with x′ = x may be singular not only at z = 0, but also at z = ∞.

For a Young diagram λ = (λ1, · · · , λl), the symplectic Schur function[6,9] is defined to be

SSp
λ = 1

2
det(hλi−i+j + hλi−i−j+2)1≤i,j≤l,

where hn is the nth complete symmetric function. The Symplectic symmetric function can be obtained by vertex operators as follows. Define
the vertex operators

VSp(z) = eξ(x,z)e−ξ(∂x,z−1)e−ξ(∂x,z) (29)

V∗
Sp(z) = (1 − z2)e−ξ(x,z)eξ(∂x,z−1)eξ(∂x,z) (30)

and let

VSp(z) =
∑
n∈Z

VSp
n zn, V∗

Sp(z) =
∑
n∈Z

VSp∗
n zn,

here the vertex operator VSp(z) is the same as Vπ (z) for π = (12) in [2].

The operator VSp
n is a raising operator of the symplectic Schur function, i.e.,

SSp
λ (x) = SSp

λ (x) = VSp
λ1

VSp
λ2

· · · VSp
λl

· 1 (31)

for a partition λ = (λ1, λ2, · · · , λl).

For an unknown function τ = τ(x), the bilinear equation ∑
n+m=−1

VSp∗
n τ ⊗ VSp

m τ = 0 (32)

gives the same integrable system as the bilinear equation (23), that is why we call this integrable system OSKP hierarchy.
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4. ORTHOGONAL TYPE BOSON-FERMION CORRESPONDENCE

For Maya diagrams |u〉 and |v〉, the pairing 〈v|u〉 is defined by the formula
〈v|u〉 = δv1+u1,0δv2+u2,0 · · · .

Define operators Hn by

Hn =
∑

j∈Z+1/2
: ψ−jψ

∗
j+n :

and H(x) = ∑∞
n=1 xnHn.

From the actions of Fermions on Maya diagrams, we get the action of H1 on a Maya diagram is H1 sending a Maya diagram |u〉 to the sum
over all Maya diagrams which can be obtained from |u〉 by moving a black stone to the right. We define Pn and Qn from equations

exp

(∑
m≥1

Hm
m

km
)

=
∑
n≥0

Q(n)kn, exp

(∑
m≥1

H−m
m

km
)

=
∑
n≥0

P(n)kn (33)

The action of Q(m) on Maya diagram is defined by Q(m) sending the Maya diagram |u〉 to the sum over all Maya diagrams which can be
obtained from |u〉 by moving black stones m times to the right and no one black stone is moved twice. Then, Q(1m) sends Maya diagram |u〉
to the sum over all Maya diagrams which can be obtained from |u〉 by moving black stones m times to the right and no two adjacent black
stones move at the same time.

Define

ψO
j =

∞∑
n=1

(−1)nψn+jQ1n −
∞∑

n=1
(−1)nψn+j+2Q1n , (34)

ψO∗
j =

∞∑
n=1

ψn+jQn. (35)

The actions of ψO
j , ψO∗

j , where j ∈ 1
2 + Z, on Maya diagram can be obtained from the actions of ψj, ψ∗

j and Q(m), Q(1m) on Maya diagram
according to (34-35).

Let λ be a Young diagram, and λ′ be its conjugate. The Frobenius notation λ = (n1, · · · , nl|m1, · · · , ml) describes the Young diagram λ by
ni = λi − i, mi = λ′

i − i, where l is the number of the boxes in the NW-SE diagonal line of λ.

Under the Boson-Fermion correspondence, the basis vector
ψn1 · · · ψnlψ

∗
m1 · · · ψ∗

ml
|vac〉 for n1 < · · · < nl < 0 and m1 < · · · < ml < 0

of Fermionic Fock space of charge zero goes over into the Schur function Sλ multiplied by aλ = (−1)
∑l

i=1(mi+ 1
2 )+ l(l−1)

2 , where λ = (−n1 −
1
2 , · · · , −nl − 1

2 | − m1 − 1
2 , · · · , −ml − 1

2 ), i.e.,

Sλ = aλ〈vac|eH(x)ψn1 · · · ψnlψ
∗
m1 · · · ψ∗

ml
|vac〉, (36)

then we have

Proposition 4.1. For λ = (−n1 − 1
2 , · · · , −nl − 1

2 | − m1 − 1
2 , · · · , −ml − 1

2 ), the orthogonal Schur function SO
λ is obtained from

SO
λ = (−1)

∑l
i=1(mi+ 1

2 )+ l(l−1)
2 〈vac|eH(x)ψO

n1 · · · ψO
nl

ψO∗
m1 · · · ψO∗

ml
|vac〉. (37)

Using the Fermions ψj and ψ∗
j , we can also get the orthogonal Schur function by the following formula.

Proposition 4.2. For λ = (−n1 − 1
2 , · · · , −nl − 1

2 | − m1 − 1
2 , · · · , −ml − 1

2 ), the orthogonal Schur function SO
λ is obtained from

SO
λ = (−1)

∑l
i=1(mi+ 1

2 )+ l(l−1)
2 〈vac|eH(x)e−∑∞

n=1
1

2n (H2
n+H2n)ψn1 · · · ψnlψ

∗
m1 · · · ψ∗

ml
|vac〉. (38)

We can get the symplectic Schur function similarly.

Proposition 4.3. For λ = (−n1 − 1
2 , · · · , −nl − 1

2 | − m1 − 1
2 , · · · , −ml − 1

2 ), the symplectic Schur function SSp
λ is obtained from

SSp
λ = aλ〈vac|eH(x)ψ

Sp
n1 · · · ψSp

nl ψ
Sp∗
m1 · · · ψSp∗

ml |vac〉 (39)

= aλ〈vac|eH(x)e−∑∞
n=1

1
2n (H2

n−H2n)ψn1 · · · ψnlψ
∗
m1 · · · ψ∗

ml
|vac〉, (40)

where aλ = (−1)
∑l

i=1(mi+ 1
2 )+ l(l−1)

2 .
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For example, we can calculate SO in the following two ways. The first way is

ψO
− 3

2
= ψ− 3

2
− ψ 1

2
− ψ− 1

2
Q + ψ 3

2
Q + · · · ,

ψO∗
− 1

2
= ψ∗

− 1
2

+ ψ∗
1
2

Q + ψ∗
3
2

Q2 + · · · ,

Then,

SO = 〈vac|eH(x)ψO
− 3

2
ψO∗

− 1
2
|vac〉

= 〈vac|eH(x)(ψ− 3
2

− ψ 1
2
)ψ∗

− 1
2
|vac〉

= S − S0.

In the second way, we know that for the Maya diagram

|γ 〉 =
1
2

3
2

5
2

7
2

9
2

· · ·
− 1

2− 3
2− 5

2− 7
2

· · ·

we have Hmγ = 0 when m > 2. Then

SO = 〈vac|eH(x)e−∑∞
n=1

1
2n (H2

n+H2n)ψ− 3
2
ψ− 1

2
|vac〉

= 〈vac|eH(x)(1 − 1
2
(H2

1 + H2))|γ 〉
= 〈vac|eH(x)(1 − Q2)|γ 〉
= S − S0.

Then, we obtain the orthogonal type Boson-Fermion correspondence.

Proposition 4.4. The Fermions ψO
j , ψO∗

j are realized in the Bosonic Fock space by XO
j , XO∗

j , i.e., for any |u〉 ∈ F , we have

〈l|eH(x)ψO
j |u〉 = XO

j 〈l|eH(x)|u〉, 〈l|eH(x)ψO∗
j |u〉 = XO∗

j 〈l|eH(x)|u〉, (41)

where 〈l| = 〈· · · , l − 5
2 , l − 3

2 , l − 1
2 |.

5. THE MODIFIED ORTHOGONAL KP HIERARCHY

Now, we consider the functional relations for a sequence of τ -functions connected by successive application of vertex operators. Let τ0 :=
τ(x) be a solution of the orthogonal KP hierarchy (23). Let τ1 := VO(α)τ and τ ′

1 = VSp(α)τ with an arbitrary constant α ∈ C
×. Then τ1

and τ ′
1 are also solutions of (23) . Moreover, we can deduce the bilinear equation∑

n+m=−2
VO∗

n τn ⊗ VO
n τn+1 = 0

from (23) multiplied by 1 ⊗ VO(α) or ∑
n+m=−2

VSp∗
n τn ⊗ VSp

n τn+1 = 0

from (32) multiplied by 1 ⊗ VSp(α). The two equations above can be equivalently rewritten into the equation

1
2π i

∮
z(1 − z2)eξ(x−x′ ,z)dzτn(x′ + [z−1] + [z])τn+1(x − [z−1] − [z]) = 0. (42)

Replace (x′, x) with (x + u, x − u) and consider the Taylor series expansion at x′ = x, we obtain∑
i−j+k=−2

Pi(−2u)Pj(∂̃u)Pk(∂̃u)τn(x + u)τn+1(x − u) +
∑

i−j+k=−4
Pi(−2u)Pj(∂̃u)Pk(∂̃u)τn(x + u)τn+1(x − u) = 0. (43)

By taking the coefficient of un = un1
1 un2

2 · · · for variety n, we will get many bilinear equations. Taking the coefficient of 1 = u0, we get
∞∑

k=0
Pk+2(Dx)Pk(Dx)τn(x) · τn+1(x) −

∞∑
k=0

Pk+3(Dx)Pk(Dx)τn(x) · τn+1(x) = 0. (44)



298 L. Shi et al. / Journal of Nonlinear Mathematical Physics 28(3) 292–302

6. UNIVERSAL CHARACTER AND UC HIERARCHY

For a pair of Young diagrams λ = (λ1, · · · , λl) and μ = (μ1, · · · , μl′), we define the universal character as a polynomial in x = (x1, x2, · · · )
and y = (y1, y2, · · · ):

SO[λ,μ](x, y) = (−1)ll′+ l′(l′+1)
2 × det

(
hμl′−i+1−l−l′+i−j−1(y) − hμl′−i+1−l−l′+i+j−1(y), 1 ≤ i ≤ l′

hλi−l′+l′−i+j(x) − hλi−l′+l′−i−j(x), l′ + 1 ≤ i ≤ l + l′
)

. (45)

We can see that the orthogonal Schur function SO
λ (x) is a special case of the universal character: SO

λ (x) = SO[λ,∅](x, y).

Let us introduce the vertex operators

X+(k) = (1 − k2)eξ(x,k)e−ξ(∂̃y ,k−1)e−ξ(∂̃y ,k)e−ξ(∂̃x ,k−1)e−ξ(∂̃x ,k), (46)

X−(k) = e−ξ(x,k)eξ(∂̃y ,k−1)eξ(∂̃y ,k)eξ(∂̃x ,k−1)eξ(∂̃x ,k), (47)

Y+(k) = (1 − k2)eξ(y,k)e−ξ(∂̃x ,k−1)e−ξ(∂̃x ,k)e−ξ(∂̃y ,k)e−ξ(∂̃y ,k−1), (48)

Y−(k) = e−ξ(y,k−1)eξ(∂̃x ,k−1)eξ(∂̃x ,k)eξ(∂̃y ,k)eξ(∂̃y ,k−1), (49)

and let X±(k) = ∑
n∈Z X±

n kn, Y±(k) = ∑
n∈Z Y±

n kn.

It can be checked that the X±
n satisfy the formionic relations: X±

n X±
m+1 + X±

n+1X±
n = 0 and X+

n+1X−
m + X−

m+1X+
n = δn+m+1,0. The same

relations hold also for Y±
n . Moreover, X±

n and Y±
n mutually commute.

Proposition 6.1. The universal character SO[λ,μ](x, y) can be obtained by means of these operators:

SO
[λ,μ](x, y) = X+

λ1
· · · X+

λl
Y+

μ1 · · · Y+
μl

· 1. (50)

Proof. We will use the Vandermonde-like identity,

det(kl−j
i − kl+j

i ) =
∏

1≤i<j≤l
(ki − kj)(1 − kikj).

Then,

X+(k1) · · · X+(kl)Y+(w−1
1 ) · · · Y+(w′−1

l ) · 1

=
l∏

i=1
(1 − k2

i )
l′∏

j=1
(1 − 1

w2
i
)
∏
i<j

(1 − kikj)(1 − kj

ki
)
∏
i,k

(1 − 1
kiwj

)(1 − ki
wj

)

×
∏
a<b

(1 − wb
wa

)(1 − 1
wawb

)eξ(x,k1) · · · eξ(x,kl)eξ(y,w−1
1 ) · · · eξ(y,w−1

l′ )

= (−1)ll′+ l′(l′+1)
2

∏
i

k−(l+2l′−i)
l−i

∏
j

w−(2l+2l′−i+1)

l′−i+1 det

(
wl+l′−j

l′−i+1 − wl+l′+j
l′−i+1, 1 ≤ i ≤ l′

kl+l′−j
i−l′ − kl+l′+j

i−l′ , l′ + 1 ≤ i ≤ l + l′

)

×eξ(x,k1) · · · eξ(x,kl)eξ(y,w−1
1 ) · · · eξ(y,w−1

l′ )

= (−1)ll′+ l′(l′+1)
2 det

(
w−l−l′+i−j−1

l′−i+1 − w−l−l′+i+j−1
l′−i+1 , 1 ≤ i ≤ l′

k−l′+i−j
i−l′ − k−l′+i+j

i−l′ , l′ + 1 ≤ i ≤ l + l′

)

×eξ(x,k1) · · · eξ(x,kl)eξ(y,w−1
1 ) · · · eξ(y,w−1

l′ ).

Taking the coefficient of kλ1
1 · · · kλl

l w−μ1
1 · · · w−μl

l′ , we will get (50).

We give a remark here to explain the difference between the universal characters SO
[λ,μ](x, y) here and that in our paper [4]. The vertex

operators which realize SO
[λ,μ](x, y) in this paper are more complex than that in [4], but in this paper, the universal characters SO

[λ,μ](x, y) can
be described by the determinant, that in [4] can not described by determinant.

Now we can define a UC hierarchy where UC is the abbreviation of universal character.

Definition 6.2. For an unknown function τ = τ(x, y), the system of bilinear relations∑
n+m=−1

X−
n τ ⊗ X+

mτ =
∑

n+m=−1
Y−

n τ ⊗ Y+
mτ = 0 (51)

is called the orthogonal UC hierarchy.
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If τ = τ(x, y) does not depend on y = (y1, y2, · · · ), the second equality of (51) trivially holds and the first one is reduced to the bilinear
expression (23) of the OSKP hierarchy. From this aspect, we treat the orthogonal UC hierarchy as an extension of the OSKP hierarchy.

It is obvious that (51) can be rewritten into the form
1

2π i

∮
(1 − z2)eξ(x′−x′′ ,z)dz τ(x′′ + [z−1] + [z], y′′ + [z]) · τ(x′ − [z−1] − [z], y′ − [z]) = 0, (52)

1
2π i

∮
(1 − w2)eξ(y′−y′′ ,w)dw τ(x′′ + [w], y′′ + [w−1] + [w]) · τ(x′ − [w], y′ − [w−1] − [w]) = 0 (53)

for arbitrary x, x′, y and y′. Consider their Taylor expansions at (x = x′, y = y′), that is, replacing (x, x′, y, y′) with (x − u, x + u, y − v, y + v)

and expand with respect to (u, v) = (u1, u2, · · · , v1, v2, · · · ), then we get

∑
i−j+k−m+n=−1

Pi(−2u)Pj(∂̃u)Pk(∂̃u)Pm(∂̃u)Pn(∂̃u)τ (x + u, y + v)τ (x − u, y − v)

−
∑

i−j+k−m+n=−3
Pi(−2u)Pj(∂̃u)Pk(∂̃u)Pm(∂̃u)Pn(∂̃u)τ (x + u, y + v)τ (x − u, y − v) = 0.

and ∑
i−j+k−m+n=−1

Pi(−2v)Pj(∂̃u)Pk(∂̃u)Pm(∂̃u)Pn(∂̃u)τ (x + u, y + v)τ (x − u, y − v)

−
∑

i−j+k−m+n=−3
Pi(−2v)Pj(∂̃u)Pk(∂̃u)Pm(∂̃u)Pn(∂̃u)τ (x + u, y + v)τ (x − u, y − v) = 0.

Taking the coefficient of unvm leads to many differential equation with respect to x, y, these differential equations are all of infinite order.
This reflects that the integrands above with (x = x′, y = y′) may be singular not only at z = 0, w = 0 but also at z = ∞, w = ∞.

In the follows, we give a class of polynomial solutions of the orthogonal UC hierarchy. From the relations between X±
n , Y±

n , we obtain( ∑
n+m=−1

X−
n ⊗ X+

m

) (
X+

t ⊗ X+
t

) = (
X+

t+1 ⊗ X+
t−1

) ( ∑
n+m=−1

X−
n ⊗ X+

m

)
(54)

( ∑
n+m=−1

Y−
n ⊗ Y+

m

) (
X+

t ⊗ X+
t

) = (
X+

t ⊗ X+
t

) ( ∑
n+m=−1

Y−
n ⊗ Y+

m

)
(55)

that is, if τ = τ(x, y) is a solution of (51), so is X+
t τ , we can verify in the same way that Y+

t τ is also a solution of (51). By equation (50),
we obtain

Proposition 6.3. All the universal characters SO
[λ,μ](x, y) are solutions of the orthogonal UC hierarchy.

It is known that if τ = τ(x, y) is a solution of (51), so are X+(α)τ and Y+(β)τ for arbitrary constants α, β ∈ C
×. Then we will consider the

bilinear relations among the solutions connected by the vertex operators. The modified orthogonal UC hierarchy is introduced as follows.

Definition 6.4. Suppose τm,n = τm,n(x, y) is a solution of the orthogonal UC hierarchy (51). Let

τm+1,n = X+(αm)τm,n, τm,n+1 = Y+(βn)τm,n,
τm+1,n+1 = X+(αm)Y+(βn)τm,n = Y+(βn)X+(αm)τm,n

for arbitrary constants αm, βn ∈ C
×. From equation (51), we can get the equations satisfied by τm,n’s, which are called the modified orthogonal

UC hierarchy.

For τ - function τm,n = τm,n(x, y), the modified orthogonal UC hierarchy includes the following bilinear equations:∑
i+j=−2

X−
i τm,n ⊗ X+

j τm+1,n =
∑

i+j=−1
Y−

i τm,n ⊗ Y+
j τm+1,n = 0, (56)

τm,n ⊗ τm+1,n+1 −
∑

i+j=0
X−

i τm+1,n ⊗ X+
j τm,n+1 =

∑
i+j=−2

Y−
i τm+1,n ⊗ Y+

j τm,n+1 = 0. (57)

Here the first equation and the second equation can be deduced from (51) by applying 1 ⊗ X+(αm) and X+(αm) ⊗ Y+(βn), respectively.
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From the definition of τm,n, for a solution τ0,0 of the orthogonal UC hierarchy, we have

τm,n =
m−1∏
i=0

X+(αi)
n−1∏
j=0

Y+(βj)τ0,0, (58)

where
m−1∏
i=0

X+(αi) = X+(αm−1) · · · X+(α1)X+(α0),

then we have the following bilinear equations.

Proposition 6.5. For integers m, n ≥ 0, it holds that∑
i+j=−m−1

X−
i τ0,0 ⊗ X+

j τm,n =
∑

i+j=−n−1
Y−

i τ0,0 ⊗ Y+
j τm,n = 0, (59)

τ0,0 ⊗ τ1,n −
∑

i+j=0
X−

i τ1,0 ⊗ X+
j τ0,n =

∑
i+j=−n−1

Y−
i τ1,0 ⊗ Y+

j τ0,n = 0, (60)

∑
i+j=−m−1

X−
i τ0,1 ⊗ X+

j τm,0 = τ0,0 ⊗ τm,1 −
∑

i+j=0
Y−

i τ0,1 ⊗ Y+
j τm,0 = 0. (61)

The results above are obtained by applying 1 ⊗ ∏m−1
i=0 X+(αi)

∏n−1
j=0 Y+(βj), X+(α0) ⊗ ∏n−1

j=0 Y+(βj) and Y+(β0) ⊗ ∏m−1
i=0 X+(αi) to (51).

Let us look closely at (59), which corresponds to the orthogonal UC hierarchy (51) when m = n = 0. It can be equivalently
rewritten into

1
2π i

∮
zm(1 − z2)eξ(x−x′,z)dz τ0,0(x′ + [z−1] + [z], y′ + [z−1] + [z]) · τm,n(x − [z−1] − [z], y − [z−1] − [z]) = 0, (62)

1
2π i

∮
wn(1 − w2)eξ(y−y′ ,w)dw τ0,0(x′ + [w−1] + [w], y′ + [w−1] + [w]) · τm,n(x − [w−1] − [w], y − [w−1] − [w]) = 0. (63)

Let I, J ⊂ Z be a disjoint pair of finite indexing sets. By specializing the parameters in (62) and (63) as

x′ = x −
∑
j∈I

[ti] +
∑
j∈J

[tj], y′ = y −
∑
j∈I

[t−1
i ] +

∑
j∈J

[t−1
j ],

we get

�1 := zm(1 − z2)eξ(x−x′,z)dz = zm(1 − z2)

∏
j∈J(1 − tjz)∏
j∈I(1 − tjz)

dz,

�2 := wn(1 − w2)eξ(x−x′ ,w)dw = wn(1 − w2)

∏
j∈J(1 − w/tj)∏
j∈I(1 − w/tj)

dw.

Let z = 1/w, we find that

�2 = z|I|−|J|−m−n−4
∏

j∈I(−tj)∏
j∈J(−tj)

�1

Consequently, the integrands of (62) and (63) coincide up to constant functor if the condition |I| − |J| = m + n + 4 holds. Let

F(z) = zm(1 − z2)

∏
j∈J(1 − tjz)∏
j∈I(1 − tjz)

· τ(x′ + [z−1] + [z], y′ + [z−1] + [z]) · τ(x − [z−1] − [z], y − [z−1] − [z])

in the integrand of (62), hence, we get ∫
C1

F(z)dz =
∫

C2

F(z)dz = 0,

where C1 and C2 are a positively oriented small circle around z = 0 and z = ∞ respectively such that all the other singularities are out of it.
Then, we obtain ∑

i∈I
Resz=1/ti F(z)dz = 0. (64)



L. Shi et al. / Journal of Nonlinear Mathematical Physics 28(3) 292–302 301

This means that the residue calculus at possible essential singularities z = 0, ∞ is avoided for the presence of two bilinear equations (62)
and (63).

For a function f = f (x, y), we define a shift operator Ti by

Ti(f ) = f (x − [ti], y − [t−1
i ])

and T{i1,··· ,ir} := Ti1 · · · Tir (f ) for short. Then (64) gives
∑
i∈I

tn
i (1 − 1

t2
i
)

∏
j∈J(ti − tj)∏

j∈I/{i}(ti − tj)
TI/{i}τ0,0(x + [t−1

i ], y + [ti])TJ∪{i}τm,n(x − [t−1
i ], y − [ti]) = 0,

which can be regarded as a difference equation with each ti being the difference interval. Then, we have

Proposition 6.6. The following equations hold:

1. If |I| − |J| = m + n + 4 and m, n ≥ 0, then
∑
i∈I

tn
i (t2

i − 1)

∏
j∈J(ti − tj)∏

j∈I/{i}(ti − tj)
TI/{i}τ0,0(x + [t−1

i ], y + [ti])TJ∪{i}τm,n(x − [t−1
i ], y − [ti]) = 0.

2. If |I| − |J| = n + 3 and n ≥ 0, then

TI(τ0,0)TJ(τ1,n) =
∑
i∈I

(1 − 1
t2
i
)

∏
j∈J(1 − tj/ti)∏

j∈I/{i}(1 − tj/ti)
TI/{i}τ1,0(x + [t−1

i ], y + [ti]) · TJ∪{i}τ0,n(x − [t−1
i ], y − [ti]) = 0.

3. If |I| − |J| = m + 3 and m ≥ 0, then

TI(τ0,0)TJ(τm,1) =
∑
i∈I

(1 − 1
t2
i
)

∏
j∈J(1 − ti/tj)∏

j∈I/{i}(1 − ti/tj)
TI/{i}τ1,0(x + [t−1

i ], y + [ti]) · TJ∪{i}τ0,n(x − [t−1
i ], y − [ti]) = 0.

Let m = 1, n = 0, I = 1, 2, 3, 4, J = ∅, and let t3 = t−1
1 , t4 = t−1

2 , the first equation in Proposition 6.6 reduces to

(1 − t1t2)(t2 − t1)T̃12(τ0,0)τ1,1 = t2(t2
1 + 1)T̃2(τ1,0)T̃1(τ0,1) − t1(t2

2 + 1)T̃1(τ1,0)T̃2(τ0,1), (65)

where the notation T̃i is a shift operator defined by

T̃if (x, y) = f (x − [ti] − [t−1
i ], y − [ti] − [t−1

i ]).
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ABSTRACT
There are four quartic integrable Hénon-Heiles systems. Only one of them has been separated in the generic form while the other
three have been solved only for particular values of the constants. We consider two of them, related by a canonical transformation,
and we give their separation coordinates in a new case.
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1. INTRODUCTION

Hénon-Heiles (HH) systems are Hamiltonian systems in R
4 endowed with the standard symplectic form dP1 ∧ dQ1 + dP2 ∧ dQ2. The

Hamiltonian function has the form

H = 1
2
(P1

2 + P2
2) + V(Q1, Q2)

where V is a polynomial function. There are four nontrivial integral cases with quartic potential whose name in the literature is HH4 followed
by three numbers giving the ratios of the coefficients of the quartic monomials: 1:2:1, 1:6:1, 1:6:8 and 1:12:16. The generalized HH systems
are obtained adding inverse terms to the potential V , without destroying the integrability of the system.

The problem of the integration in quadratures of these systems has been extensively studied in the last decades. The most efficient and
elegant method for this purpose, is to find canonical coordinates that separate the Hamilton-Jacobi equation. In this paper we will deal with
the delicate task of characterizing such coordinates. The difficulty of the task is well known so that, despite decades of efforts, only one of
these four systems has been separated in the generic form: HH4 1:2:1. For the other three systems, the separation coordinates are known
only in some degenerate cases. For HH4 1:12:16, the best available results can be found here [7]. In this paper we deal with HH4 1:6:1 and
HH4 1:6:8 only.

Let’s now introduce them.

2. THE LINK BETWEEN HH4 1:6:1 AND HH4 1:6:8

The generalized Hamiltonian function has the form:

H161 = 1
2
(P1

2 + P2
2) − 1

2
ω

(
Q1

2 + Q2
2) − Q1

4

32
− 3 Q1

2Q2
2

16
− Q2

4

32
− k1

2

2 Q1
2 − k2

2

2 Q2
2 (1)

and depends on three arbitrary constants, ω, k1 and k2. The last two terms are the inverse terms and the ratios of the coefficients of the
quartic terms are 1:6:1 as expected. This Hamiltonian system possesses an integral of motion that we call K:

K161 =
(

P1P2 − Q1Q2

(
Q1

2

8
+ Q2

2

8
+ ω

))2
− k1

2
(

P2
2

Q1
2 − Q2

2

4

)
− k2

2
(

P1
2

Q2
2 − Q1

2

4

)
+ k1

2k2
2

Q1
2Q2

2 (2)
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The reader can easily check that these two functions are in involution with respect to the standard Poisson bracket hence the system is
Liouville integrable. The separation coordinates for this system are unknown.

The canonical change of coordinates [1]:

Q1 = R+
2

Q2 = R−
2

P1 = R+
2

(
−p2

q2
− q1

2
− k1 − k2

q2
2

)
+ 2

k1
R+

P2 = R−
2

(
−p2

q2
+ q1

2
− k1 − k2

q2
2

)
− 2

k2
R−

(3)

where

R±2 = −4 q1
2 ± 8 p1 − 2 q2

2 + 16
p2

2

q22 ∓ 16
q1p2
q2

+ 32
(k1 − k2) p2

q23 ∓ 16
(k1 − k2) q1

q22 + 16
(k1 − k2)

2

q24 + 16 ω

changes HH4 1:6:1 into HH4 1:6:8:

h168 = 1
2
(p1

2 + p2
2) + ω

(
4 q1

2 + q2
2)

2
− q1

4

2
− 3 q1

2q2
2

8
− q2

4

16
− γ q1 + β

2 q22

k168 = 1
4

(
p2

2 − q22 (
2 q12 + q22 − 8 ω

)
8

+ β

q22

)2

− q22 (
q2p1 − 2 q1p2

)2

16

− γ

4

(
2 γ q2

2 − 4 q2p1p2 + q1q2
4

2
+ q1

3q2
2 + 4 p2

2q1 − 4 ωq1q2
2 + 4

q1β

q22

)
.

(4)

These functions are usually written in a slightly different form in the literature. It’s easy to pass from one form to the other with a simple
change of coordinates. The relationships between the coefficients of the two systems are

γ = 1
2
(k1 + k2) β = −(k1 − k2)

2. (5)

The separation coordinates of (4), in the case γ = ω = 0, were found using Painlevé analysis in 1994 [6]:

2q1
2 + q2

2 − 8p2
2 ± 8

√
R

q22 (6)

where R is the polynomial obtained replacing β = 0 in k168. The case ω �= 0 is treated in [8].

Inverting the change of coordinates (3), they provide the separation coordinates for HH4 1:6:1 in the symmetric case k2
1 = k2

2. As far as we
know, no other cases have been separated to this day. In this paper we solve the case k1k2 = 0. Before that, let’s turn our attention to an
alternative method to see the process of separation of coordinates.

3. THE KOWALEWSKI CONDITIONS

In 2005 F. Magri published a paper [3] revisiting the famous problem solved by S. Kowalewski in 1888 [2]: the so called Kowalewski top.
The method adopted in the paper is general and can be applied even in the non-Hamiltonian case, provided that a convenient number of
commuting vector fields and first integrals are present. It was subsequently refined in several publications over the years and finally presented
in a complete form in [4,5], where the reader will find all the proofs that are omitted here.

Let’s now summarize the key ideas in the case of a symplectic system in R
4 with Hamiltonian functions H and K.

The method assumes the presence of a second Poisson tensor P2 compatible with the tensor P1 associated to the symplectic structure:

[P1, P2] = [P2, P2] = 0

where [. . . ] is the Schouten bracket. We also assume that the two Hamiltonian functions H and K are in involution with respect to the Poisson
bracket associated to P2:

P2(dH, dK) = 0.

At this stage one can built the torsionless, recursive operator N = P2P1
−1. If N has maximal rank, the two distinct eigenvalues provide (half

of) the separation coordinates. The explicit determination of the compatible Poisson tensor P2, that requires the calculation of six unknown
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functions, can result quite cumbersome even in relatively simple cases. The number of unknown functions can be reduced to four, the
components of a vector field X, looking for tensors P2 = LX(P1). Using this method the bi-Hamiltonian structure of cubic Hénon-Heiles
systems can be calculated directly [9].

However, in the present case, the explicit determination of a bi-Hamiltonian structure in natural coordinates seems definitely too complicated.
The good news is that one does not have to build up N (and, before this, P2) in order to calculate its eigenvalues. To understand this point,
we start observing that N acts on the vector fields tangent to the Lagrange foliation defined by the level surfaces of H and K [9]. This
bi-dimensional foliation is spanned by the Hamiltonian vector fields XH and XK so that

NXH = m1XH + m2XK

NXK = m3XH + m4XK

for some functions m1, . . . , m4. It is now clear that the so called control matrix M =
(

m1 m2
m3 m4

)
is nothing but the restriction of N to the

leaves of the foliation, written in the basis associated with XH and XK . Furthermore the tensor M is also torsionless since it is the restriction
of a torsionless tensor to an invariant surface. This is the first of the two properties that characterize M. The second one is that the vector
fields XH and XK must commute with respect to the modified commutator

[X, Y]M := [MX, Y] + [X, MY] − M[X, Y]
defined on the vector fields tangent to the Lagrangian foliation.

F. Magri proved that these two properties are necessary and sufficient conditions for the system to be separable and for the eigenvalues of M
to be separation coordinates [5]. The point of interest in all this discussion is that these two conditions, T(N) = 0 and [X, Y]M = 0, can be
reduced to four differential constraints, on the entries of M, called Kowalewski Conditions (KC):

{m3, H} = {m1, K}
{m4, H} = {m2, K}

{m1m3 + m3m4, H} = {m2
1 + m2m3, K}

{m2m3 + m2
4, H} = {m1m2 + m2m4, K}

(7)

We also need an extra condition for the new coordinates to be canonical: the trace and the determinant of M must be in involution

{m1 + m4, m1m4 − m2m3} = 0. (8)

In order to solve the KC one has to solve four differential equations in four unknown functions m1, . . . , m4; this can be quite challenging.
A first step could be to select a particular class of solutions that is easier to calculate but general enough to include most of the significant
examples in the literature. The experience suggests this form for M:

m1 = aF2 + bFG + cG2 + dF + eG + f
m2 = gF + v
m3 = pF2 + qFG + rG2 + sF + tG + u
m4 = gG + w

(9)

where all the coefficients a, b, c . . . are constants of the motion while F and G are unknown functions.

If we agree to denote by
.
f = XH(f ) f ′ = XK(f )

the derivatives of a function f along the given Hamiltonian fields, and replacing (9) into (7), we obtain the following

Proposition 3.1. If the functions F and G are solutions of the equations

F′ = .
G

G′ = (μF + τ)
.
G − (μG + ν)

.
F

(10)

where μ, τ and ν are constants of the motion, then the functions

m1 := −e(μF2 + τF − G) − v(μF + τ) + w
m2 := eF + v
m3 := −e(μFG + νF) − v(μG + ν)

m4 := eG + w

(11)

verify the KC.
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Therefore, if we limit our search to solutions of the form (9), the problem reduces to two differential equations (10) in two unknown functions
F and G.

In [8] we suggested the method of the vector field Z, in order to reduce the task to the search of one single function V (the potential function)
and a few constants.

Let’s outline the method in the case of HH4 1:6:1. The idea is to extend the phase space including the constants of the problem as
new coordinates, so turning our system into a Poisson one. In our example, we can extend the phase space to R

6 with coordinates
(P1, P2, Q1, Q2, k1, k2). The Poisson tensor is obtained adding two extra columns and two extra lines of zeros to P1. We now consider the
vector field Z so defined:

Z = XV + w1
∂

∂k1
+ w2

∂

∂k2
, w1, w2 ∈ R.

V , w1, w2 are unknown and XV is the Hamiltonian vector field associated to V . Sometimes it may be useful to look for a potential function
of the form V = ln f (some examples are given in [8]). The next step is to define the “Fundamental Functions” F and G of Proposition 3.1 in
this way:

F = Z(H161) G = Z(K161). (12)

A simple calculation proves that the first of equations (10) is automatically verified with any choice of the potential function [8]. This means
that the problem is finally reduced to the determination of a single function V (plus, eventually, the constants w1, w2) verifying the second
equation in (10). It should be stressed that the involutivity condition (8) has to be checked independently from the KC.

It’s time now to see how the method of the vector field Z can provide the separation coordinates for HH4 1:6:1 in the case k1k2 = 0.

4. HH4 1:6:1 IN THE CASE k1k2 = 0

The system (1)-(2) is invariant under the symmetry

(P1, P2, Q1, Q2, k1, k2) −→ (P2, P1, Q2, Q1, k2, k1)

so it’s enough to solve the case k2 = 0:

H = 1
2
(P1

2 + P2
2) − 1

2
ω

(
Q1

2 + Q2
2) − Q1

4

32
− 3 Q1

2Q2
2

16
− Q2

4

32
− k2

2 Q1
2

K =
(

P1P2 − Q1Q2

(
Q1

2

8
+ Q2

2

8
+ ω

))2
− k2

(
P2

2

Q1
2 − Q2

2

4

) (13)

In order to apply the method of the field Z we extend the phase space to R
5 with coordinates (P1, P2, Q1, Q2, k). A first remark is that the

system is homogeneous with respect to the following gradation:

P1, P2, ω ∼ 2 Q1, Q2 ∼ 1 k ∼ 3 . (14)

We detail now the steps of the algorithm.

1. We look for a vector field of the form Z = XV +w ∂/∂k with V = ln f as suggested in Section 3. Our problem is now to find the unknown
function f and the constant w.

2. Because the system is homogenous we look for homogeneous Fundamental Functions F and G. For that purpose, the presence of the term
∂/∂k forces f ∼ 4.

3. Replacing f with the general homogeneous polynomial of degree 4 with respect to the gradation (14) and adding inverse terms like kP2/Q1
suggested by the form of the Hamiltonian functions, we are now able to calculate F and G with (12).

4. We can choose the coefficients of f and w in such a way that the second equation in (10) is verified:

V = 1
k

ln
(

P1P2 − Q1Q2

(
Q1

2

8
+ Q2

2

8
+ ω

)
+ kP2

Q1
+ kQ1

2

)
(15)

and Z = XV + 1
k

∂

∂k
.

5. We choose the integrals of motion in M in such a way that the involutivity condition (8) is verified (see (16)).

The results of this discussion can be summarized in the following
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Theorem 4.1. Consider

• the vector field Z = XV + 1
k

∂

∂k
, where V is the function in (15);

• the functions F and G defined in (12);
• the Control Matrix

M =
( −2k2F + 2H 1

−2k2G + 4K + 8k2ω 2H

)
. (16)

Then the eigenvalues of M are separation (canonical) coordinates for (13).

Proof. A straightforward calculation gives

F = 2 Q1
2Q2 + 4 Q1P1 + 4 k

Q1
4Q2 + (

Q2
3 + 8 ω Q2 − 4 k

)
Q1

2 − 8 P1P2Q1 − 8 kP2

G = 2 ω − Q1
2

4
− Q2

2

4
− P2 − k

(
Q1

4 + (
3 y2 + 8 ω + 4P2

)
Q1

2 + 4 Q1Q2P1 + 4 kQ2
)

Q1
4Q2 + (

Q2
3 + 8 ω Q2 − 4 k

)
Q1

2 − 8 P1P2Q1 − 8 kP2

and (16) provides the four entries m1, . . . , m4 of the Control Matrix. With these functions (7) and (8) are verified so that the eigenvalues of
M are separation coordinates.

5. FINAL REMARKS

• If we replace K with K − H2 the Control Matrix can be written in the simplified form:

M =
(−2kF + 4H 1

−2kG + 4K 0

)
.

F. Magri already pointed out a similar behavior of the Kowalewski top [5].
• Another set of separation coordinates can be obtained using quadratic functions in F and G:

M =
( −2k2F2 + G F

−2k2FG + 4KF G

)
(17)

• HH4 1:6:8 has been solved only in the particular cases βγ = 0 [10]. The eigenvalues of (16) or (17), through the change of coordinates
(3), provide the separation coordinates for the case β = −4γ 2.

• HH4 1:6:1 with k1 = k2 = k has already been solved using the method of the field Z and a potential function V = ln f [8]. The functions
f for the cases k1 = k2 = k and (k1, k2) = (k, 0) are, respectively,

P1P2 − Q1Q2

(
Q1

2

8
+ Q2

2

8
+ ω

)
+ kP2

Q1
+ kP1

Q2
+ k2

Q1Q2

and

P1P2 − Q1Q2

(
Q1

2

8
+ Q2

2

8
+ ω

)
+ kP2

Q1
+ kQ1

2
.

The idea is to guess, from these particular examples, the form of f for the generic case. The first part of the function is independent from the
constants so it is reasonable to expect that it remains unchanged but for the last terms the situation is uncertain. For instance it is not clear
why the term kQ1/2 does not appear in the case k2 = k1 = k.

The generic case remains unsolved.
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ABSTRACT
In this paper, we prove a local equivariant index theorem for sub-signature operators which generalizes Weiping Zhang’s index
theorem for sub-signature operators.
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1. INTRODUCTION

The Atiyah-Singer index Theorem ([2,3]) gives a cohomological interpretation of the Fredholm index of an elliptic operator. The Atiyah-Bott-
Segal-Singer index formula, which called the equivariant index theorem, is a generalization with group action of the Atiyah-Singer index
theorem. The first direct proof of this result was given by Patodi, Gilkey, Atiyah-Bott-Patodi partly by using invariant theory [1,12]. This
theorem generalizes the Atiyah-Singer index theorem and the Atiyah-Bott fixed point formula for elliptic complexes, which is a generalization
of the Lefschetz fixed point formula. In [7], Berline and Vergne gave a heat kernel proof of the Atiyah-Bott-Segal-Singer index formula.
Moreover, Lafferty, Yu and Zhang [14] presented a simple and direct geometric proof of the equivariant index theorem for an orientation-
preserving isometry on an even dimensional spin manifold by using Clifford asymptotics of heat kernel. Furthermore, Ponge and H. Wang
gave a different proof of the equivariant index formula by the Greiner’s approach to the heat kernel asymptotics [19]. In [15], in order to
prove family rigidity theorems, Liu and Ma proved the equivariant family index formula. In [22], Y. Wang gave another proof of the local
equivarint index theorem for a family of Dirac operators by the Greiner’s approach to the heat kernel asymptotics. In [21], using the Greiner’s
approach to the heat kernel asymptotics, Y. Wang proved the equivariant Gauss-Bonnet-Chern formula and gave the variation formulas for
the equivariant Ray-Singer metric, which are originally due to J. M. Bismut and W. Zhang [9].

In parallel, Freed [11] considered the case of an orientation reversing involution acting on an odd dimensional spin manifold and gave
the associated Lefschetz formulas by the K-theretical way. In [20], Wang constructed an even spectral triple by the Dirac operator and
the orientation-reversing involution and computed the Connes-Chern character for this spectral triple. In [16], Liu and Wang proved
an equivariant odd index theorem for Dirac operators with involution parity and the Atiyah-Hirzebruch vanishing theorems for odd
dimensional spin manifolds. In [24] and [25], Zhang introduced the sub-signature operators and proved a local index formula for these
operators. By computing the adiabatic limit of eta-invariants associated to the so-called sub-signature operators, a new proof of the Riemann-
Roch-Grothendieck type formula of Bismut-Lott was given in [17] and [10]. The motivation of the present article is to prove a local
equivariant index formula for sub-signature operators. As the subsignature operator is locally a twisted Dirac operator, we can obtain our
theorem by the proof of equivariant twisted Dirac operators. We give a direct proof of a local equivariant index theorem for subsignature
operators by the Volterra calculus, rather than derived from the local equivariant index theorem of twisted Dirac operators. Thus our
direct proof of the equivariant index theorem of the subsignature operators using Volterra calculus can be seen as analogous to the works
[21,23,26].

This paper is organized as follows: In Section 2, we recall some background on sub-signature operators. In Section 3.1, we prove a local
equivariant index formula for sub-signature operators in even dimension. In Section 3.2, we prove a local equivariant odd dimensional
index formula for sub-signature operators with an orientation-reversing involution.

*Corresponding author: Email: wangy581@nenu.edu.cn
Data availability statement: The authors confirm that the data supporting the findings of this study are available within the article.
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2. THE SUB-SIGNATURE OPERATORS

In this section, we give the standard setup (also see Section 1 in [24]). Let M be an oriented closed manifold of dimension n. Let E be
an oriented sub-bundle of the tangent vector bundle TM. Let gTM be a metric on TM. Let gE be the induced metric on E. Let E⊥ be the
sub-bundle of TM orthogonal to E with respect to gTM . Let gE⊥ be the metric on E⊥ induced from gTM . Then (TM, gTM) has the following
orthogonal splittings

TM = E ⊕ E⊥, (2.1)

gTM = gE ⊕ gE⊥
. (2.2)

Clearly, E⊥ carries a canonically induced orientation. We identify the quotient bundle TM/E with E⊥.

Let �(M) = ⊕n
0 �i(M) = ⊕n

0 �(∧i(T∗M)) be the set of smooth sections of ∧(T∗M). Let ∗ be the Hodge star operator of gTM . Then �(M)

inherits the following inner product

〈α, β〉 =
∫

M
α ∧ ∗β , α, β ∈ �(M). (2.3)

We use gTM to identify TM and T∗M. For any e ∈ �(TM), let e∧ and ie be the standard notation for exterior and interior multiplications on
�(M). Let c(e) = e ∧ −ie, ĉ(e) = e ∧ +ie be the Clifford actions on �(M) verifying that

c(e)c(e′) + c(e′)c(e) = −2〈e, e′〉gTM , (2.4)

ĉ(e)ĉ(e′) + ĉ(e′)ĉ(e) = 2〈e, e′〉gTM , (2.5)

c(e)ĉ(e′) + ĉ(e′)c(e) = 0. (2.6)

Denote k = dimE and we assume k is even. Let {f1, · · · , fk} be an oriented (local) orthonormal basis of E. Set

ĉ(E, gE) = ĉ(f1) · · · ĉ(fk), (2.7)

where ĉ(E, gE) does not depend on the choice of the orthonormal basis. Let

ε = Id∧even(T∗M) − Id∧odd(T∗M)

be the Z2-grading operator of

∧(T∗M) = ∧even(T∗M) ⊕ ∧odd(T∗M).

Set

τ(M, gE) =
(

1√−1

) k(k+1)
2

εĉ(E, gE). (2.8)

It is easy to check

τ(M, gE)2 = 1. (2.9)

Let

∧±(T∗M, gE) = {
ω ∈ ∧∗(T∗M), τ(M, gE)ω = ±ω

}
the (even/odd) eigen-bundles of τ(M, gE) and by �±(M, gE) the corresponding set of smooth sections. Let δ = d∗ be the formal adjoint
operator of the exterior differential operator d on �(M) with respect to the inner product (2.3). Set on �(M) = �(
T∗M)

DE = 1
2

(
ĉ(E, gE)(d + δ) + (−1)k(d + δ)ĉ(E, gE)

)
. (2.10)

Then we can check

DEτ(M, gE) = −τ(M, gE)DE, (2.11)

D∗
E = (−1)

k(k+1)
2 DE, (2.12)

where D∗
E is the formal adjoint operator of DE with respect to the inner product (2.3). Set

D̃E = (
√−1)

k(k+1)
2 DE.

From (2.11), D̃E is a formal self-adjoint first order elliptic differential operator on �(M) interchanging �±(M, gE).

Definition 2.1. The sub-signature operator D̃E,+ with respect to (E, gTM) is the restriction of D̃E on �+(M, gE).
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If we denote the restriction of D̃E on �±(M, gE) by D̃E,±, then
D̃∗

E,± = D̃E,∓.

Recall that E is the subbundle of TM and that we have the orthogonal decomposition (2.1) of TM and the metric gTM . Let PE (resp. PE⊥ ) be
the orthogonal projection from TM to E(resp. E⊥). Let ∇TM be the Levi-Civita connection of gTM . We will use the same notation for its lift
to �(M). Set

∇E = PE∇TMPE, (2.13)

∇E⊥ = PE⊥∇TMPE⊥
. (2.14)

Then ∇E(resp.∇E⊥ ) is a Euclidean connection on E(resp.E⊥), and we will use the same notation for its lifting on �(E∗)(resp. �(E⊥,∗)). Let
S be the tensor defined by

∇TM = ∇E + ∇E⊥ + S.
Then S takes values in skew-adjoint endomorphisms of TM, and interchanges E and E⊥. Let {e1, · · · , en} be an oriented (local) orthonormal
base of TM. To specify the role of E, set {f1, · · · , fk} be an oriented (local) orthonormal basis of E. We will use the greek subscripts for the
basis of E. Then by Proposition 1.4 in [24], we have

Proposition 2.2. The following identity holds,

D̃E = (
√−1)

k(k+1)
2
(

ĉ(E, gE)(d + δ) + 1
2
∑

i
c(ei)(∇TM

ei ĉ(E, gE))
)

. (2.15)

Similar to Lemma 1.1 in [24], we have

Lemma 2.3. For any X ∈ �(TM), the following identity holds,

∇TM
X ĉ(E, gE) = −ĉ(E, gE)

∑
α

ĉ(S(X)fα)ĉ(fα). (2.16)

Let �TM , �E be the Bochner Laplacians

�TM =
n∑
i

(∇TM,2
ei − ∇TM

∇TM
ei ei

), (2.17)

�E =
k∑
i

(∇E,2
ei − ∇E

∇E
ei ei

). (2.18)

Let K be the scalar curvature of (M, gTM). Let RTM (resp., RE, RE⊥
) be the curvature of ∇TM (resp., ∇E, ∇E⊥

). Let {h1, · · · , hn−k} be an
oriented (local) orthonormal base of E⊥. Now we can state the following Lichnerowicz type formula for D̃2

E. From Theorem 1.1 in [24],
we have

Theorem 2.4. [24] The following identity holds,

D̃2
E = −�TM + K

4
+ 1

8
∑

1≤i,j≤n

∑
1≤α,β≤k

〈RE(ei, ej)fβ , fα〉c(ei)c(ej)ĉ(fα)ĉ(fβ)

+ 1
8
∑

1≤i,j≤n

∑
1≤s,t≤n−k

〈RE⊥
(ei, ej)ht , hs〉c(ei)c(ej)ĉ(hs)ĉ(ht) + 1

2
∑
α

ĉ
(
(�TM − �E)fα

)
ĉ(fα)

+
∑
i,α

(
ĉ(S(ei)fα)ĉ(fα)∇TM

ei − ĉ(S(ei)∇E
ei fα)ĉ(fα) + 1

2
ĉ
(

∇E
(∇TM

ei −∇E
ei )ei

fα
)

ĉ(fα) + 3
4

‖ S(ei)fα) ‖2
)

+ 1
4
∑

i,α �=β

ĉ(S(ei)fα)ĉ(S(ei)fβ)ĉ(fα)ĉ(fβ). (2.19)

3. A LOCAL EQUIVARIANT INDEX THEOREM FOR SUB-SIGNATURE OPERATORS

3.1. A Local Even Dimensional Equivariant Index Theorem for Sub-Signature Operators

Let M be a closed oriented Riemannian manifold of even dimension n and φ an orientation-preserving isometry on M. Then the smooth
map φ induces a map φ̃ = φ−1,∗ : ∧T∗

x M → ∧T∗
φ(x)M on the exterior algebra bundle ∧T∗

x M. Let D̃E be the sub-signature operator. We



312 K. Bao et al. / Journal of Nonlinear Mathematical Physics 28(3) 309–320

assume that dφ preserves E and E⊥ and their orientations, then φ̃ĉ(E, gE) = ĉ(E, gE)φ̃. Then φ̃D̃E = D̃Eφ̃. We will compute the equivariant
index

Indφ(D̃+
E ) = Tr(φ̃|kerD̃+

E
) − Tr(φ̃|kerD̃−

E
). (3.1)

We recall the Greiner’s approach to the heat kernel asymptotics as in [19] and [4,5,13]. Define the operator given by

(Q0u)(x, s) =
∫ ∞

0
e−sD̃2

E [u(x, t − s)]dt, u ∈ �c(M × R, ∧T∗M), (3.2)

maps u continuously to D′(M × R, ∧T∗M)) which is the dual space of �c(M × R, ∧T∗M)). We have(
D̃2

E + ∂

∂t

)
Q0u = Q0

(
D̃2

E + ∂

∂t

)
u = u, u ∈ �c(M × R, ∧T∗M)). (3.3)

Let (D̃2
E + ∂

∂t )
−1 be the Volterra inverse of D̃2

E + ∂
∂t as in [5]. That is(

D̃E,± + ∂

∂t

)−1 (
D̃E,± + ∂

∂t

)
= I − R1,

(
D̃E,± + ∂

∂t

)(
D̃E,± + ∂

∂t

)−1
= I − R2, (3.4)

where R1, R2 are smoothing operators. Let

(Q0u)(x, t) =
∫

M×R

KQ0(x, y, t − s)u(y, s)dyds, (3.5)

and kt(x, y) is the heat kernel of e−tD̃2
E . We get

KQ0(x, y, t) = kt(x, y) when t > 0, when t < 0, KQ0(x, y, t) = 0. (3.6)

Then Q0 has the Volterra property, i.e., it has a distribution kernel of the form KQ0(x, y, t − s) where KQ0(x, y, t) vanishes on the region t < 0.
The parabolic homogeneity of the heat operator D̃2

E + ∂
∂t , i.e. the homogeneity with respect to the dilations of Rn × R

1 given by

λ · (ξ , τ) = (λξ , λ2τ), (ξ , τ) ∈ R
n × R

1, λ �= 0. (3.7)

Let p2(x, ξ)+p1(x, ξ)+p0(x, ξ) be the symbol of D̃2
E, then the symbol of D̃2

E + ∂
∂t is

√−1τ +p2(x, ξ)+p1(x, ξ)+p0(x, ξ), it is homogeneous
with respect to (ξ , τ).

In the following, for g ∈ S(Rn+1) and λ �= 0, we let gλ be the tempered distribution defined by〈
gλ(ξ , τ), u(ξ , τ)

〉 = |λ|−(n+2)
〈
g(ξ , τ), u(λ−1ξ , λ−2τ)

〉
, u ∈ S(Rn+1). (3.8)

Definition 3.1. A distribution g ∈ S(Rn+1) is parabolic homogeneous of degree m, m ∈ Z, if for any λ �= 0, we have gλ = λmg.

Let C− denote the complex halfplane {Imτ < 0} with closure C−. Then:

Lemma 3.2. [5] Let q(ξ , τ) ∈ C∞((Rn × R)/0) be a parabolic homogeneous symbol of degree m such that:

(i) q extends to a continuous function on (Rn × C−)\0 in such way to be holomorphic in the last variable when the latter is restricted to C−.
Then there is a unique g ∈ S(Rn+1) agreeing with q on R

n+1\0 so that:
(ii) g is homogeneous of degree m;
(iii) The inverse Fourier transform ğ(x, t) vanishes for t < 0.
Let U be an open subset of Rn. We define Volterra symbols and Volterra �DOs on U × R

n+1\0 as follows.

Definition 3.3. Sm
V (U ×R

n+1), m ∈ Z, consists in smooth functions q(x, ξ , τ) on U ×R
n ×R with an asymptotic expansion q ∼ ∑

j≥0 qm−j,
where:

(i) ql ∈ C∞(U × [(Rn × R)/0] is a homogeneous Volterra symbol of degree l, i.e. ql is parabolic homogeneous of degree l and satisfies the
property (i) in Lemma 2.3 with respect to the last n + 1 variables;

(ii) The sign ∼ means that, for any integer N and any compact K, U, there is a constant CNKαβk > 0 such that for x ∈ K and for |ξ | + |τ | 1
2 > 1

we have

|∂α
x ∂

β
ξ ∂k

τ (q −
∑
j<N

qm−j)(x, ξ , τ)| ≤ CNKαβk(|ξ | + |τ | 1
2 )m−N−|β|−2k. (3.9)

Definition 3.4. �m
V (U × R), m ∈ Z, consists in continuous operators Q0 from C∞

c (Ux × Rt) to C∞(Ux × Rt) such that:

(i) Q0 has the Volterra property;
(ii) Q0 = q(x, Dx, Dt) + R for some symbol q in Sm

V (U × R) and some smoothing operator R.
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In what follows, if Q0 is a Volterra �DO, we let KQ0(x, y, t − s) denote its distribution kernel, so that the distribution KQ0(x, y, t) vanishes
for t < 0.

Definition 3.5. Let qm(x, ξ , τ) ∈ C∞(U × (Rn+1/0)) be a homogeneous Volterra symbol of order m and let gm ∈ C∞(U) ⊗ S
′(Rn+1) denote

its unique homogeneous extension given by Lemma 2.3. Then:

(i) q̆m(x, y, t) is the inverse Fourier transform of gm(x, ξ , τ) in the last n + 1 variables;
(ii) qm(x, Dx, Dt) is the operator with kernel q̆m(x, y − x, t).

Proposition 3.6. ([5,13]) The following properties hold.

1) Composition. Let Qj ∈ �
mj
V (U × R), j = 1, 2 have symbol qj and suppose that Q1 or Q2 is properly supported. Then Q1Q2 is a Volterra

�DO of order m1 + m2 with symbol q1 ◦ q2 ∼ ∑ 1
α!∂

α
ξ q1Dα

x q2.
2) Parametrices. An operator Q is the order m Volterra �DO with the paramatrix P then

QP = 1 − R1, PQ = 1 − R2 (3.10)

where R1, R2 are smoothing operators.

Proposition 3.7. ([5,13]) The differential operator D̃2
E + ∂t is invertible and its inverse (D̃2

E + ∂t)−1 is a Volterra �DO of order −2.

We denote by Mφ the fixed-point set of φ, and for a = 0, · · · , n, we let Mφ = ⋃
0≤a≤n Mφ

a , where Mφ
a is an a-dimensional submanifold.

Given a fixed-point x0 in a component Mφ
a , consider some local coordinates x = (x1, · · · , xa) around x0. Setting b = n − a, we may further

assume that over the range of the domain of the local coordinates there is an orthonormal frame e1(x), · · · , eb(x) of Nφ
z . This defines fiber

coordinates v = (v1, · · · , vb). Composing with the map (x, v) ∈ Nφ(ε0) → expx(v) we then get local coordinates x1, · · · , xa, v1, · · · , vb for
M near the fixed point x0. We shall refer to this type of coordinates as tubular coordinates. Then Nφ(ε0) is homeomorphic with a tubular
neighborhood of Mφ . Set iMφ : Mφ ↪→ M be an inclusion map. Since dφ preserves E and E⊥, considering the oriented (local) orthonormal
basis {f1, · · · , fk, h1, · · · , hn−k}, set

dφx0 =
(

exp(L1) 0
0 exp(L2)

)
, (3.11)

where L1 ∈ so(k) and L2 ∈ so(n − k)

Let

Â(RMφ

) = det
1
2

(
RMφ

/4π

sinh(RMφ
/4π)

)
; νφ(RNφ

) := det−
1
2 (1 − φNe− RNφ

2π ). (3.12)

The aim of this section is to prove the following result.

Theorem 3.8. (Local Equivariant Sub-Signature Index Theorem. Even Dimension)

Let x0 ∈ Mφ , then

lim
t→0

Str
[
φ̃(x0)Kt(x0, φ(x0))

]
=
(

1√−1

) k
2

2
n
2

{
Â(RMφ

)νφ(RNφ

)i∗Mφ

[
det

1
2

(
cosh

(
RE

4π
− L1

2

))

× det
1
2

⎛
⎜⎜⎝

sinh
(

RE⊥
4π

− L2
2

)
RE⊥
4π

− L2
2

⎞
⎟⎟⎠Pf

(
RE⊥

4π
− L2

2

)⎤⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭

(a,0)

(x0), (3.13)

where L1 ∈ so(k), L2 ∈ so(n − k) and Pf
(

RE⊥
4π

− L2
2

)
denotes the Pfaffian of

(
RE⊥
4π

− L2
2

)
.

Next we give a detailed proof of Theorem 3.9. Let Q = (D̃2
E + ∂t)−1. For x ∈ Mφ and t > 0 set

IQ(x, t) := φ̃(x)−1
∫

Nφ
x (ε)

φ(expxv)KQ(expxv, expx(φ
′(x)v), t)dv. (3.14)

Here we use a trivialization over ∧(T∗M) about the tubular coordinates. Using the tubular coordinates, we have

IQ(x, t) =
∫

|v|<ε

φ̃(x, 0)−1φ̃(x, v)KQ(x, v; x, φ′(x)v; t)dv. (3.15)
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Let

q∧(T∗M)
m−j (x, v; ξ , ν; τ) := φ̃(x, 0)−1φ̃(x, v)qm−j(x, v; ξ , ν; τ). (3.16)

We mention the following result

Proposition 3.9. [19] Let Q ∈ �m
V (M × R, ∧(T∗M)), m ∈ Z. Uniformly on each component Mφ

a

IQ(x, t) ∼
∑
j≥0

t−( a
2 +[ m

2 ]+1)Ij
Q(x) as t → 0+, (3.17)

where Ij
Q(x) is defined by

I(j)
Q (x) :=

∑
|α|≤m−[ m

2 ]+2j

∫ vα

α!
(
∂α

v q∧(T∗M)

2[ m
2 ]−2j+|α|

)∨
(x, 0; 0, (1 − φ′(x))v; 1)dv. (3.18)

Similar to Theorem 1.2 in [15] and Section 2 (d) in [8], we have

Strτ [φ̃exp(−tD̃2
E)] = (

√−1)
k
2

∫
M

Strε
[
ĉ(E, gE)kt(x, φ(x))

]
dx

= (
√−1)

k
2

∫
M

Strε[ĉ(E, gE)K(D̃2
E+∂t)−1(x, φ(x), t)]dx. (3.19)

We will compute the local index in this trivialization. Let (V , q) be a finite dimensional real vector space equipped with a quadratic form.
Let C(V , q) be the associated Clifford algebra, i.e., the associative algebra generated by V with the relations v · w + w · v = −2q(v, w) for
v, w ∈ V . Let {e1, · · · , en} be an orthomormal basis of (V , q), let C(V , q)⊗̂C(V , −q) be the grading tensor product of C(V , q) and C(V , −q),
and ∧∗V⊗̂ ∧∗ V be the grading tensor product of ∧∗V and ∧∗V . Define the symbol map:

σ : C(V , q)⊗̂C(V , −q) → ∧∗V⊗̂ ∧∗ V ; (3.20)

where σ(c(ej1) · · · c(ejl)⊗1) = ej1 ∧· · ·∧ ej1 ⊗1, σ(1⊗ ĉ(ej1) · · · ĉ(ejl)) = 1⊗ êj1 ∧· · ·∧ êj1 . Using the interior multiplication ι(ej) : ∧∗V →
∧∗−1V and the exterior multiplication ε(ej) : ∧∗V → ∧∗+1V , we define representations of C(V , q) and C(V , −q) on the exterior algebra:

c : C(V , q) → End ∧ V , ej �→ c(ej) : ε(ej) − ι(ej); (3.21)
ĉ : C(V , −q) → End ∧ V , ej �→ ĉ(ej) : ε(ej) + ι(ej). (3.22)

The tensor product of these representations yields an isomorphism of superalgebras

c ⊗ ĉ : C(V , q)⊗̂C(V , −q) → End ∧ V (3.23)

which we will also denote by c. We obtain a supertrace (i.e., a linear functional vanishing on supercommutators) on C(V , q)⊗̂C(V , −q) by
setting Str(a) = StrEnd∧V [c(a)] for a ∈ C(V , q)⊗̂(V , −q), where StrEnd∧V is the canonical supertrace on EndV .

Lemma 3.10. For 1 ≤ i1 < · · · < ip ≤ n, 1 ≤ j1 < · · · < jq ≤ n, when p = q = n,

Str[c(ei1) · · · c(ein)ĉ(ei1) · · · ĉ(ein)] = (−1)
n(n+1)

2 2n (3.24)

and otherwise equals zero.

We will also denote the volume element in ∧V⊗̂∧V by ω = e1 ∧· · ·∧en ∧ ê1 ∧· · ·∧ ên. For a ∈ ∧V⊗̂∧V , let Ta be the coefficient of ω. The
linear functional T : ∧V⊗̂ ∧ V → R is called the Berezin trace. Then for a a ∈ C(V , q)⊗̂(V , .q), we have Strs(a) = (−1)

n(n+1)
2 2n(Tσ)(a).

We define the Getzler order as follows:

deg∂j = 1
2

deg∂t = −degxj = 1, degc(ej) = 1, degĉ(ej) = 0. (3.25)

Let Q ∈ �∗
V(Rn × R, ∧∗T∗M) have symbol

q(x, ξ , τ) ∼
∑
k≤m′

qk(x, ξ , τ), (3.26)

where qk(x, ξ , τ) is an order k symbol. Then taking components in each subspace ∧jT∗M ⊗ ∧lT∗M of ∧T∗M ⊗ ∧T∗M and using Taylor
expansions at x = 0 give formal expansions

σ [q(x, ξ , τ)] ∼
∑
j,k

σ [qk(x, ξ , τ)](j,l) ∼
∑
j,k,α

xα

α! σ [∂α
x qk(0, ξ , τ)](j,l). (3.27)
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The symbol xα

α! σ [∂α
x qk(0, ξ , τ)](j,l) is the Getzler homogeneous of k + j − |α|. Therefore, we can expand σ [q(x, ξ , τ)] as

σ [q(x, ξ , τ)] ∼
∑
j≥0

q(m−j)(x, ξ , τ), q(m) �= 0, (3.28)

where q(m−j) is a Getzler homogeneous symbol of degree m − j.

Definition 3.11. The integer m is called as the Getzler order of Q. The symbol q(m) is the principal Getzler homogeneous symbol of Q. The
operator Q(m) = q(m)(x, Dx, Dt) is called the model operator of Q.

Let e1, . . . , en be an oriented orthonormal basis of Tx0 M such that e1, · · · , ea span Tx0 Mφ and ea+1, · · · , en span Nφ
x0 . This provides us with

normal coordinates (x1, · · · , xn) → expx0(x1e1+· · ·+xnen). Moreover using parallel translation enables us to construct a synchronous local
oriented tangent frame e1(x), ..., en(x) such that e1(x), · · · , ea(x) form an oriented frame of TMφ

a and ea+1(x), · · · , en(x) form an (oriented)
frame Nτ (when both frames are restricted to Mφ). This gives rise to trivializations of the tangent and exterior algebra bundles. Write

φ′(0) =
(

1 0
0 φN

)
= exp(Aij), (3.29)

where Aij ∈ so(n).

Let ∧(n) = ∧∗
R

n be the exterior algebra of Rn. We shall use the following gradings on ∧(n)⊗̂ ∧ (n),

∧ (n)⊗̂ ∧ (n) = ⊕
1 ≤ k1, k2 ≤ a
1 ≤ l1, l2 ≤ b

∧k1,l1(n)⊗̂ ∧k2,l2 (n), (3.30)

where ∧k,l(n) is the space of forms dxi1 ∧ · · · ∧ dxik+l with 1 ≤ i1 < · · · < ik ≤ a and a + 1 ≤ ik+1 < · · · < ik+l ≤ n. Given a
form ω ∈ ∧(n)⊗̂ ∧ (n), denote by ω(k1,l1),(k2,l2) its component in ∧(n)(k1,l1)⊗̂ ∧(k2,l2) (n). We denote by |ω|(a,0),(a,0) the Berezin integral
|ω(∗,0),(∗,0)|(a,0),(a,0) of its component ω(∗,0),(∗,0) in ∧(∗,0),(∗,0)(n).

Let A ∈ Cl(V , q)⊗̂Cl(V , −q), then

Str[φ̃A] = (−1)
n
2 2n(−1

4
)

b
2 det(1 − φN)|σ(A)|((a,0),(a,0))

+(−1)
n
2 2n

∑
0≤l1<b,0≤l2≤b

|σ(φ̃)((0,l1),(0,l2))σ (A)((a,b−l1),(a,b−l2))|(n,n). (3.31)

In order to calculate Str[φ̃A], we need to consider the representation of |σ(φ̃)((0,b),(0,l2))σ (A)((a,0),(a,b−l2))|(n,n). Let the matrix φN equal

φN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A a
2 +1

. . . 0
. . .

0
. . .

A n
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, A a
2 +1 =

(
cosθ a

2 +1 sinθ a
2 +1

−sinθ a
2 +1 cosθ a

2 +1

)
, A n

2
=
(

cosθ n
2

sinθ n
2−sinθ n

2
cosθ n

2

)
. (3.32)

From Lemma 3.2 in [26], then

Lemma 3.12. We have

φ̃ =
(

1
2

) n−a
2 n∏

j= a
2 +1

[
(1 + cosθj) − (1 − cosθj)c(e2j−1)c(e2j)ĉ(e2j−1)ĉ(e2j)

+sinθj
(
c(e2j−1)c(e2j) − ĉ(e2j−1)ĉ(e2j)

)]
. (3.33)

Then we obtain

σ(φ̃)((0,b),(0,l2)) =
(

1
2

) n−a
2

σ

⎧⎨
⎩

n∏
j= a

2 +1

[−(1 − cosθj)c(e2j−1)c(e2j)ĉ(e2j−1)ĉ(e2j) + sinθj
(
c(e2j−1)c(e2j)

)]⎫⎬⎭
((0,b),(0,l2))

=
(

1
2

) n−a
2

ea+1 ∧ · · · ∧ enσ

⎧⎨
⎩

n∏
j= a

2 +1

[−(1 − cosθj)ĉ(e2j−1)ĉ(e2j) + sinθj
]⎫⎬⎭

(0,l2)
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=
(

1
2

) n−a
2

ea+1 ∧ · · · ∧ enσ

⎧⎨
⎩

n∏
j= a

2 +1

2sin
θj

2

[
cos

θj

2
− sin

θj

2
ĉ(e2j−1)ĉ(e2j)

]⎫⎬
⎭

(0,l2)

=
(

1
2

) n−a
2

ea+1 ∧ · · · ∧ endet
1
2 (1 − φN)σ

⎡
⎣exp

⎛
⎝−1

4
∑

1≤i,j≤n
Aijĉ(ei)ĉ(ej)

⎞
⎠
⎤
⎦(0,l2)

=
(

1
2

) n−a
2

ea+1 ∧ · · · ∧ endet
1
2 (1 − φN)σ

⎡
⎣exp

⎛
⎝−1

4
∑

1≤i,j≤k
(L1)ijĉ(fi)ĉ(fj)

−1
4

∑
1≤i,j≤n−k

(L2)k+i,k+jĉ(hi)ĉ(hj)

⎞
⎠
⎤
⎦(0,l2)

. (3.34)

Next we calculate |σ(A)|((a,0),(a,b−l2)). In the following, we shall use the following “curvature forms”: R′ := (Ri,j)1≤i,j≤a, R′′ :=
(Ra+i,a+j)1≤i,j≤b. Let

Ṙ = 1
4

∑
1≤α,β≤k

〈REfα , fβ〉ĉ(fα)ĉ(fβ),

R̈ = 1
4

∑
1≤s,t≤n−k

〈RE⊥
hs, ht〉ĉ(hs)ĉ(ht);

and
˜̇R = 1

4
∑

1≤α,β≤k
〈(RE − L1)fα , fβ〉ĉ(fα)ĉ(fβ),

˜̈R = 1
4

∑
1≤s,t≤n−k

〈(RE⊥ − L2)hs, ht〉ĉ(hs)ĉ(ht).

By (2.19), let F = D̃2
E, we get

Proposition 3.13. The model operator of F is

F(2) = −
n∑

r=1

⎛
⎝∂r + 1

8
∑

1≤i,j,l≤n
〈RTM(ei, ej)el, er〉ylei ∧ ej

⎞
⎠2

+ 1
8
∑

1≤i,j≤n

∑
1≤α,β≤k

〈RE(ei, ej)fβ , fα〉ei ∧ ejĉ(fα)ĉ(fβ)

+1
8
∑

1≤i,j≤n

∑
1≤s,t≤n−k

〈RE⊥
(ei, ej)ht , hs〉ei ∧ ejĉ(hs)ĉ(ht). (3.35)

From the representation of F(2), we get the model operator of ∂
∂t + D̃2

E is ∂
∂t + F(2). And we have(

∂

∂t
+ F(2)

)
KQ(−2)

(x, y, t) = 0. (3.36)

Similar to Lemma 2.9 in [19], we get

Lemma 3.14. Let Q ∈ �(−2)(Rn × R, ∧(T∗M)) be a parametrix for (F(2) + ∂t)−1. Then

(1) Q has Getzler order -2 and its model operator is (F(2) + ∂t)−1.
(2) For all t > 0,

(
√−1)

k
2 ĉ(E, gE)I(F(2)+∂t)−1(0, t) = (

√−1)
k
2 ĉ(E, gE)

(4π t)− a
2

det
1
2 (1 − φN)

det
1
2

⎛
⎝ tR′

2

sinh
(

tR′
2

)
⎞
⎠ det−

1
2 (1 − φNe−tR′′

)exp
(

t( ˜̇R + ˜̈R)
)

. (3.37)

Similar to Lemma 3.6 in [22]. we have

Lemma 3.15. Q ∈ �∗
V(Rn × R, ∧(T∗M)) has the Getzler order m and model operator Q(m). Then as t → 0+

(1) σ [IQ(0, t)](j,l) = O(t
j−m−a−1

2 ), if m − j is odd.
(2) σ [IQ(0, t)](j,l) = O(t

j−m−a−2
2 )IQ(m)(0, 1)(j,l) + O(t

j−m−a
2 ), if m − j is even.
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In particular, for m = −2 and j = a and a is even we get

σ [IQ(0, t)]((a,0),(a,b−l2)) = IQ(−2)(0, 1)((a,0),(a,b−l2)) + O(t
1
2 ). (3.38)

With all these preparations, we are going to prove the local even dimensional equivariant index theorem for sub-signature operators.
Substituting (3.34), (3.37) into (3.31), we obtain

lim
t→0

Strε
[
φ̃(x0)(

√−1)
k
2 ĉ(E, gE)I(F+∂t)−1(x0, t)

]

= (−1)
n
2 2n

(
1
2

) n−a
2

(4π)−
a
2 (

√−1)
k
2
∣∣∣Â(RMφ

)νφ(RNφ

)σ
[

ĉ(f1) · · · ĉ(fk)exp( ˜̇R + ˜̈R)
]∣∣∣((a,0),n)

=
(

1√−1

) k
2

2
n
2

{
Â(RMφ

)νφ(RNφ

)i∗Mφ

[
det

1
2

(
cosh

(
RE

4π
− L1

2

))

× det
1
2

⎛
⎜⎜⎝

sinh
(

RE⊥
4π

− L2
2

)
RE⊥
4π

− L2
2

⎞
⎟⎟⎠Pf

(
RE⊥

4π
− L2

2

)⎤⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭

(a,0)

(x0). (3.39)

Where we have used the algebraic result of Proposition 3.13 in [6], and the Berezin integral in the right hand side of (3.39) is the application
of the following lemma.

Lemma 3.16. Let L1 ∈ so(k), L2 ∈ so(n − k), we have∣∣∣σ [ĉ(f1) · · · ĉ(fk)exp( ˜̇R + ˜̈R)
]∣∣∣(n) = (−1)

n−k
2 det

1
2

(
cosh

(
RE − L1

2

))

× det
1
2

⎛
⎜⎜⎝

sinh
(

RE⊥−L2
2

)
(RE⊥ − L2)/2

⎞
⎟⎟⎠Pf

(
RE⊥ − L2

2

)
. (3.40)

Proof. In order to compute this differential form, we make use of the Chern root algorithm (see [22]). Assume that n = dimM and k = dimE
are both even integers. As in [7], let L1 ∈ so(k), L2 ∈ so(n − k), we write

RE − L1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

(
0 −θ1
θ1 0

)
0

. . .

0

(
0 −θ− k

2
θ− k

2
0

)

⎞
⎟⎟⎟⎟⎟⎟⎠

, RE⊥ − L2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(
0 −θ̂1
θ̂1 0

)
0

. . .

0

(
0 −θ̂ n−k

2
θ̂ n−k

2
0

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3.41)

Then we obtain
1
4

∑
1≤α,β≤k

〈(RE − L1)fα , fβ〉ĉ(fα)ĉ(fβ) = 1
2

∑
1≤α<β≤k

〈(RE − L1)fα , fβ〉ĉ(fα)ĉ(fβ)

= 1
2
∑

1≤j≤ k
2

θjĉ(f2j−1)ĉ(f2j); (3.42)

1
4

∑
1≤s,t≤n−k

〈(RE⊥ − L2)hs, ht〉ĉ(hs)ĉ(ht) = 1
2

∑
1≤s<t≤n−k

〈(RE⊥ − L2)hs, ht〉ĉ(hs)ĉ(ht)

= 1
2

∑
1≤l≤ n−k

2

θ̂l ĉ(h2l−1)ĉ(h2l). (3.43)

Then the left hand side of (3.40) is∣∣∣σ (ĉ(f1) · · · ĉ(fk)exp( ˜̇R + ˜̈R)
)∣∣∣(n)

=

∣∣∣∣∣∣∣σ
⎛
⎜⎝ĉ(f1) · · · ĉ(fk)

∏
1≤j≤ k

2

exp
(

1
2
θjĉ(f2j−1)ĉ(f2j)

) ∏
1≤l≤ n−k

2

exp
(

1
2
θ̂l ĉ(h2l−1)ĉ(h2l)

)⎞⎟⎠
∣∣∣∣∣∣∣
(n)
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=

∣∣∣∣∣∣∣σ
⎛
⎜⎝ĉ(f1) · · · ĉ(fk)

∏
1≤j≤ k

2

[
cos

θj

2
− sin

θj

2
ĉ(f2j−1)ĉ(f2j)

] ∏
1≤l≤ n−k

2

[
cos

θ̂l
2

− sin
θ̂l
2

ĉ(h2l−1)ĉ(h2l)

]⎞⎟⎠
∣∣∣∣∣∣∣
(n)

= (−1)
n−k

2
∏

1≤j≤ k
2

cos
θj

2
∏

1≤l≤ n−k
2

sin
θ̂l
2

. (3.44)

Now we consider the right hand side of (3.40),

(
RE − L1

)2p = (−1)p

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
θ

2p
1 0
0 θ

2p
1

)
0

. . .

0

⎛
⎝θ

2p
k
2

0

0 θ
2p
k
2

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.45)

Then

det
1
2

(
cosh

(
RE − L1

2

))
=

k
2∏

j=1

⎛
⎝ ∞∑

p=0

(
θj

2

)2p
(−1)p

(2p)!

⎞
⎠ =

k
2∏

j=1
cosh

√−1θj

2
=

k
2∏

j=1

e
√−1θj

2 + e−
√−1θj

2

2
=

k
2∏

j=1
cos

θj

2
. (3.46)

Similarly, we have

det
1
2

⎛
⎜⎜⎝

sinh
(

RE⊥−L2
2

)
(RE⊥ − L2)/2

⎞
⎟⎟⎠ =

n−k
2∏

j=1

sin θ̂j
2

θ̂j
2

. (3.47)

On the other hand,

Pf

(
RE⊥ − L2

2

)
= T

(
exp

(∑
s<t

〈RE⊥ − L2
2

hs, ht〉hs ∧ ht
))

= T

⎛
⎜⎝exp

⎛
⎜⎝ ∑

1≤j≤ n−k
2

θ̂j

2
h2j−1 ∧ h2j

⎞
⎟⎠
⎞
⎟⎠ =

n−k
2∏

j=1

θ̂j

2
. (3.48)

Combining these equations, the proof of lemma 3.17 is complete.

To summarize, we have proved Theorem 3.9.

3.2. The Local Odd Dimensional Equivariant Index Theorem for Sub-Signature Operators

In this section, we give a proof of a local odd dimensional equivariant index theorem for sub-signature operators. Let M be an odd
dimensional oriented closed Riemannian manifold. Using (2.19) in Section 2, we may define the sub-signature operators D̃E. Let γ be an
orientation reversing involution isometric acting on M. Let dγ preserve E, E⊥ and preserve the orientation of E, then γ̃ τ̂ (E, gE) = τ̂ (E, gE)γ̃ ,
where γ̃ is the lift on the exterior algebra bundle ∧T∗M of dγ . There exists a self-adjoint lift γ̃ : �(M; ∧(T∗M)) → �(M; ∧(T∗M)) of dγ

satisfying

γ̃ 2 = 1; D̃Eγ̃ = −γ̃ D̃E. (3.49)

Now the +1 and −1 eigenspaces of γ̃ give a splitting

�(M; ∧(T∗M)) ∼= �+(M; ∧(T∗M))⊕�−(M; ∧(T∗M))) (3.50)

then the sub-signature operator interchanges �+(M; ∧(T∗M)) and �−(M; ∧(T∗M)), and ĉ(E, gE) preserves �+(M; ∧(T∗M)) and
�−(M; ∧(T∗M)).

Denotes by D̃+
E the restriction of D̃E to �+(M, ∧(T∗M)). We assume dimE = k is even, then (D̃E)ĉ(E, gE) = ĉ(E, gE)(D̃E) and ĉ(E, gE) is a

linear map from kerD̃±
E to kerD̃±

E .

The purpose of this section is to compute

indĉ(E,gE)[(D̃+
E )] = Tr(ĉ(E, gE)|kerD̃+

E
) − Tr(ĉ(E, gE)|kerD̃+

E
). (3.51)
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By the Mckean-Singer formula, we have

indĉ(E,gE)(D̃+
E ) =

∫
M

(
√−1)

k
2 Tr[γ̃ ĉ(E, gE)kt(x, γ (x))]dx

=
∫

M
(
√−1)

k
2 Tr[γ̃ ĉ(E, gE)K(F+∂t)−1(x, γ (x), t)]dx. (3.52)

Let

RE − L1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

(
0 −θ1
θ1 0

)
0

. . .

0

(
0 −θ− k

2
θ− k

2
0

)

⎞
⎟⎟⎟⎟⎟⎟⎠

, RE⊥ − L2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
0 −θ̂1
θ̂1 0

)
0

. . .

0

(
0 −θ̂ n−k−1

2
θ̂ n−k−1

2
0

)
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; (3.53)

and

Pf

(
RE⊥ − L2

2

)
=

n−k−1
2∏

j=1

θ̂j

2
. (3.54)

Similar to Theorem 3.9, we get the main Theorem in this section.

Theorem 3.17. (Local odd dimensional equivariant index Theorem for sub-signature operators)

Let x0 ∈ Mγ , then

lim
t→0

Tr
[
γ̃ (x0)ĉ(E, gE)I(F+∂t)−1(x0, t)

] = −
(

1√−1

) k
2 −1

2
n
2

{
Â(RMγ

)νφ(RNγ

)i∗Mγ

[
det

1
2

(
cosh

(
RE

4π
− L1

2

))

× det
1
2

⎛
⎜⎜⎝

sinh
(

RE⊥
4π

− L2
2

)
RE⊥
4π

− L2
2

⎞
⎟⎟⎠Pf

(
RE⊥

4π
− L2

2

)⎤⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭

(a,0)

(x0). (3.55)

CONFLICTS OF INTEREST

The authors declare they have no conflicts of interest.

AUTHORS’ CONTRIBUTION

KB and YW contributed in study conceptualization and writing (review and editing) the manuscript. JW and YW contributed in data
curation, formal analysis and writing (original draft). YW contributed in funding acquisition and project administration, supervised the
project, formal analysis and writing (original draft) the manuscript.

FUNDING

This research was funded by National Natural Science Foundation of China: No. 11771070. NSFC. 11901322

ACKNOWLEDGMENTS

The work of the first author was supported by NSFC. 11901322. The work of the third author was supported by NSFC. 11771070. The authors
also thank the referees for their careful reading and helpful comments.

REFERENCES

[1] M.F. Atiyah, R. Bott, V. Patodi, On the heat equation and the index theorem, Invent. Math. 19 (1973), 279–330.
[2] M.F. Atiyah, I.M. Singer, The index of elliptic operators: I, Ann. of Math. 87 (1968), 484–530.
[3] M.F. Atiyah, I.M. Singer, The index of elliptic operators: III, Ann. of Math. 87 (1968), 546–604.

https://doi.org/10.1007/bf01425417


320 K. Bao et al. / Journal of Nonlinear Mathematical Physics 28(3) 309–320

[4] R. Beals, P.C. Greiner, Calculus on Heisenberg manifolds, Ann. Math. Studies, (AM-119), 119 (1988), 194.
[5] R. Beals, P.C. Greiner, N.K. Stanton, The heat equation on a CR manifold, J. Differential Geom. 20 (1984), 343–387.
[6] N. Berline, E. Getzler, M. Vergne, Heat kernels and Dirac operators, Springer-Verlag, Berlin, 1992.
[7] N. Berline, M. Vergne, A computation of the equivariant index of the Dirac operator, Bull. Soc. Math. France 113 (1985), 305–345.
[8] J.M. Bismut, The Atiyah-Singer index theorem for families of Dirac operators: Two heat equation proofs, Invent. math. 83 (1986), 91–151.
[9] J.M. Bismut, W. Zhang, Milnor and Ray-Singer metrics on the equivariant determinant of a flat vector bundle, Geom. Funct. Anal. 4 (1994), 136–212.

[10] X. Dai, W. Zhang, Adiabatic limit, Bismut-Freed connection, and the real analytic torsion form, J. reine angew. Math. 647 (2010), 87–113.
[11] D. Freed, Two index theorems in odd dimensions, Commu. Anal. Geom. 6 (1998), 317–329.
[12] P.B. Gilkey, Invariance theory, the heat equation, and the Atiyah-Singer index theorem, Publish or Perish, 1984.
[13] P. Greiner, An asymptotic expansion for the heat equation, Arch. Rational Mech. Anal. 41 (1971), 163–218.
[14] J.D. Lafferty, Y.L. Yu, W.P. Zhang, A direct geometric proof of Lefschetz fixed point formulas, Trans. AMS. 329 (1992), 571–583.
[15] K. Liu, X. Ma, On family rigidity theorems, I. Duke Math. J. 102 (2000), 451–474.
[16] K. Liu, Y. Wang, Rigidity theorems on odd dimensional manifolds, Pure and Appl. Math. Quarterly 5 (2009), 1139–1159.
[17] X. Ma, W. Zhang, Eta-invariants, torsion forms and flat vector bundles, Math. Ann. 340 (2008), 569–624.
[18] R. Ponge, A new short proof of the local index formula and some of its applications, Comm. Math. Phys. 241 (2003), 215–234.
[19] R. Ponge, H. Wang, Noncommutative geometry and conformal geometry, II. Connes-Chern character and the local equivariant index theorem,

J. Noncomm. Geom. 10 (2016), 307–378.
[20] Y. Wang, Chern-Connes character for the invariant Dirac operator in odd dimensions, Sci. China Ser. A 48 (2005), 1124–1134.
[21] Y. Wang, The Greiner’s approach of heat kernel asymptotics and the variation formulas for the equivariant Ray-Singer metric, Int. J. Geom Methods

Mod. Phy. 12 (2015), 1550066.
[22] Y. Wang, Volterra calculus, local equivariant family index theorem and equivariant eta forms, Asian J. Math. 20 (2016), 759–784.
[23] Y. Yanlin, Local index theorem for signature operators, Acta Math. Sinica. 3 (1987), 363–372.
[24] W. Zhang, Sub-signature operators, η-invariants and a Riemann-Roch theorem for flat vector bundles, Chin. Ann. Math. 25 (2004), 7–36.
[25] W. Zhang, Sub-signature operator and its local index theorem, Chin. Sci. Bull. 41 (1996), 294–295.
[26] J.W. Zhou, A geometric proof of the Lefschetz fixed-point theorem for signature operators (Chinese), Acta Math. Sinica. 35 (1992), 230–239.

https://doi.org/10.4310/jdg/1214439284
https://doi.org/10.24033/bsmf.2036
https://doi.org/10.1007/BF01388755
https://doi.org/10.1007/bf01895837
https://doi.org/10.1515/crelle.2010.074
https://doi.org/10.1090/s0002-9947-1992-1022168-9
https://doi.org/10.1007/s00208-007-0160-9
https://doi.org/10.1007/s00220-003-0915-4
https://doi.org/10.4171/jncg/235
https://doi.org/10.1360/022004-47
https://doi.org/10.4310/ajm.2016.v20.n4.a8
https://doi.org/10.1007/bf02559916
https://doi.org/10.1142/s0252959904000032


Journal of Nonlinear Mathematical Physics
Vol. 28(3); September (2021), pp. 321–336

DOI: https://doi.org/10.2991/jnmp.k.210519.001; ISSN 1402-9251; eISSN 1776-0852
https://www.atlantis-press.com/journals/jnmp

Research Article

Analytical Properties for the Fifth Order Camassa-Holm
(FOCH) Model

Mingxuan Zhu1, Lu Cao2, Zaihong Jiang2, , Zhijun Qiao3,*,

1School of Mathematical Sciences, Qufu Normal University, Qufu 273100, P. R. China
2Department of Mathematics, Zhejiang Normal University, Jinhua, 321004, P. R. China
3School of Mathematical and Statistical Science, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA

ART ICLE I NF O

Article History

Received 21 March 2021
Accepted 06 May 2021

Keywords

The Fifth order Camassa-Holm
(FOCH) model

global existence
infinite propagation speed
long time behavior

2010 Mathematics Subject
Classifications

37L05
35Q35
35B44

ABSTRACT
This paper devotes to present analysis work on the fifth order Camassa-Holm (FOCH) model which recently proposed by Liu and
Qiao. Firstly, we establish the local and global existence of the solution to the FOCH model. Secondly, we study the property of
the infinite propagation speed. Finally, we discuss the long time behavior of the support of momentum density with a compactly
supported initial data.
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1. INTRODUCTION

In this paper, we consider the following fifth order Camassa-Holm (FOCH) model [29]:{
mt + umx + buxm = 0, t > 0, x ∈ R,
m = (1 − α2∂2

x )(1 − β2∂2
x )u, t > 0, x ∈ R, (1.1)

where b ∈ R is a constant , α, β ∈ R are two parameters, α �= β , αβ �= 0. Without loss of generality, we only consider the case α > 0, β > 0.
When α < 0, β < 0, one can get the similar results by using the corresponding absolute values |α| and |β| instead of α, β .

In what follows, we present some mathematical results related to the topic of this paper. Liu and Qiao [29] obtained some interesting solutions
including explicit single pseudo-peakons, two-peakon, and N-peakon solutions. Detailed dynamical interactions for two-pseudo-peakons
and three-pseudo-peakons were also investigated in their paper with numerical simulations. There have been extensive studies on high order
Camassa-Holm type equations in the mathematics physics fields [5,16,17,20,22,31,38–41]. For the case α = β = 1, on the circle, McLachlan
and Zhang [31] established the local well-posedness of the solution in Hs with s > 7

2 , it was shown that system (1.1) with α = β = 1 does’t
admit finite time blow-up solutions. Tang and Liu [38] proved that the Cauchy problem for this equation is locally well-posed in the critical
Besov space B7/2

2,1 or Bs
p,r(1 ≤ p, r ≤ +∞ and s > max{3 + 1

p , 7
2 }). The peakon-like solution and ill-posedness was also studied in [38]. For

the case b = 2, m = u − uxx + uxxxx, by using the Kato’s theory, the local well-posedness [39] was studied in the Sobolev space Hs with
s > 9

2 . Ding [16,17] investigated the stationary solution, generality mild traveling solutions and conservative solution. Coclite, Holden and
Karlsen [5] established the existence of global weak solutions. They also presented some invariant spaces under the action of the equation.
In [20], the infinite propagation speed was considered for the case m = 4u − 5uxx + uxxxx. They also proved asymptotic behavior of the
solution under the condition that the initial data decays exponentially and algebraically.

When β = 0 (or α = 0), it means m = u − α2uxx. The Camassa-Holm equation, the Degasperis-Procesi equation, and the Holm-Staley
b-family equations are the special cases of equation (1.1) with b = 2, b = 3 and b ∈ R, respectively. These equations arise at various levels
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of approximation in shallow water theory, and possess a physics background with shallow water propagation, the bi-Hamiltonian structure,
Lax pair, and explicit solutions including classical soliton, cuspon, and peakon solutions.

In 1993, Camassa and Holm [3] derived an integrable shallow water equation with peaked solitons, which was called the Camassa-Holm
equation. In 1999, Degasperis and Procesi [15] extended the Camassa-Holm equation to a new water wave equation (Degasperis-Procesi
equation). Both Camassa-Holm equation and Degasperis-Procesi equation have attracted much attention. They are completely integrable
[11,12,14,35]. Infinitely many conservation laws have been shown in [14,27,37]. For the Camassa-Holm equation, in [9,28], They proved
the local well-posedness for the initial datum in Hs with s > 3/2. There were many works to study the blow-up phenomenon, such as
[8–10,24,28,32]. McKean [32] (See also [24] for a simple proof) proved that if and only if some portion of the positive part of y0 = u0 − u0xx
lies to the left of some portion of its negative part, then the Camassa-Holm equation blow-up in finite time. The hierarchy properties, related
finite-dimensional constrained flows, and algebro-geometric solutions of the Camassa-Holm equation were proposed in [34]. In [1], they
studied the global conservative solution for the Camassa-Holm equation. Global dissipative solution have been shown in [2]. Constantin and
Strauss [13] studied the orbital stability of the peakons. Himonas and his collaborators [21] obtained the persistence properties and unique
continuation of solutions of the Camassa-Holm equation. In [25], the authors deduced the limit of the support of momentum density as t
goes to +∞. In [4,6,7,23,26,30,33,35,36,42], they have investigated some mathematical properties for the Degasperis-Procesi equation. For
the Holm-Staley b-family equation, mathematical studies have also been presented in [18,19,43].

The paper is organized as follows. In Section 2, we establish the local well-posedness and blow up scenario for the FOCH model. Conditions
for global existence are found in Section 3. In Section 4, we establish the property of the infinite propagation speed for the FOCH model. In
Section 5, we discuss the long time behavior for the support of momentum density of the FOCH model.

2. LOCAL WELL-POSEDNESS AND BLOW UP SCENARIO

Similar to the Camassa-Holm equation [9], we can establish the following local well-posedness theorem for the FOCH model (1.1).

Theorem 2.1. Let u0 ∈ Hs(R) with s > 7
2 . Then there exist a T > 0 depending on ‖u0‖Hs , such that the FOCH model (1.1) has a unique

solution
u ∈ C([0, T); Hs(R)) ∩ C1([0, T); Hs−1(R)).

Morever, the map u0 ∈ Hs → u ∈ C([0, T); Hs(R)) ∩ C1([0, T); Hs−1(R)) is continuous.

The proof is similar to that of Theorem 2.1 in [9,39]. To make the paper concise, we would like to omit the detail proof here. The maximum
value of T in Theorem 2.1 is called the lifespan of the solution, in general. If T < ∞, that is

lim
t→T− ‖u‖Hs = ∞,

we say the solution blows up in finite time.

Before going to the blow up scenario, we have the following Lemma.

Lemma 2.2. As m = (1 − α2∂2
x )(1 − β2∂2

x )u, then

u = p ∗ m, p = α2

α2 − β2 p1 − β2

α2 − β2 p2,

where p1 = 1
2α

e− |x|
α , p2 = 1

2β
e− |x|

β , α �= β, α > 0, β > 0.

Proof. Taking fourier transform to m = (1 − α2∂2
x )(1 − β2∂2

x )u, we have
m̂ = (1 + α2ξ 2)(1 + β2ξ 2)û.

Notice that when f (x) = e−a|x|, a > 0 then

f̂ (ξ) = 2a
ξ 2 + a2 .

It follows that

û(ξ) = 1
1 + α2ξ 2 · 1

1 + β2ξ 2 · m̂(ξ) = p̂1(ξ) · p̂2(ξ) · m̂(ξ),

where p1 = 1
2α

e− |x|
α , p2 = 1

2β
e− |x|

β . Then,

u(x) = F−1 (
p̂1(ξ) · p̂2(ξ) · m̂(ξ)

) = p1 ∗ p2 ∗ m(x).
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Let p = p1 ∗ p2, we have

p(x) = 1
4αβ

∫
R

e− |x−y|
α e− |y|

β dy

= 1
2(α2 − β2)

[
αe− |x|

α − βe− |x|
β

]

= α2

(α2 − β2)
p1 − β2

(α2 − β2)
p2.

By Lemma 2.2, we can rewrite u(x, t) as

u =
[

α2

(α2 − β2)
p1 − β2

(α2 − β2)
p2

]
∗ m

= α

2(α2 − β2)

[
e− x

α

∫ x

−∞
e

ξ
α m(ξ , t)dξ + e

x
α

∫ +∞

x
e− ξ

α m(ξ , t)dξ

]

− β

2(α2 − β2)

[
e− x

β

∫ x

−∞
e

ξ
β m(ξ , t)dξ + e

x
β

∫ +∞

x
e− ξ

β m(ξ , t)dξ

]
. (2.1)

Differentiating u with respect to x, we have

ux = 1
2(α2 − β2)

[
−e− x

α

∫ x

−∞
e

ξ
α m(ξ , t)dξ + e

x
α

∫ +∞

x
e− ξ

α m(ξ , t)dξ

]

+ 1
2(α2 − β2)

[
e− x

β

∫ x

−∞
e

ξ
β m(ξ , t)dξ − e

x
β

∫ +∞

x
e− ξ

β m(ξ , t)dξ

]
.

Then, we present the precise blow-up scenario.

Theorem 2.3. Assume that u0 ∈ H4(R) and let T be the maximal existence time of the solution u(x, t) to equation (1.1), α �= β, α > 0, β > 0
with the initial data u0(x).
(1). If b > 1

2 , then the corresponding solution of the FOCH model (1.1) blows up in finite time if and only if

lim
t→T

inf
x∈R{ux(x, t)} = −∞.

(2). If b < 1
2 , then the corresponding solution of the FOCH model (1.1) blows up in finite time if and only if

lim
t→T

sup
x∈R

{ux(x, t)} = +∞.

Proof. By direct calculation, we have

‖m‖2
L2 =

∫
R

[u − (α2 + β2)uxx + α2β2uxxxx]2dx

=
∫
R

u2 + (α2 + β2)2u2
xx − 2(α2 + β2)uuxx + α4β4u2

xxxx + 2α2β2uuxxxx − 2(α2 + β2)α2β2uxxuxxxxdx

=
∫
R

u2 + (α2 + β2)2u2
xx + 2(α2 + β2)u2

x + α4β4u2
xxxx + 2α2β2u2

xx + 2(α2 + β2)α2β2u2
xxxdx.

Hence

c‖u‖2
H4 ≤ ‖m‖2

L2 ≤ C‖u‖2
H4 ,

where c and C are positive constants depending on α and β . If b > 1
2 , direct calculation we have

d
dt

∫
R

m2dx = (1 − 2b)

∫
R

uxm2dx ≤ (1 − 2b) inf
x∈R{ux(x, t)}

∫
R

m2dx.

If

inf
x∈R{ux(x, t)} ≥ −M,

then
d
dt

∫
R

m2dx ≤ −(1 − 2b)M
∫
R

m2dx.
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By using the Gronwall inequality,

‖m‖2
L2 =

∫
R

m2dx ≤ e−(1−2b)M
∫
R

m2
0dx = e−(1−2b)M‖m0‖2

L2 .

Therefore the H4-norm of the solution is bounded on [0, T).

On the other hand,

u = α2

(α2 − β2)
p1 ∗ m − β2

(α2 − β2)
p2 ∗ m

= α2

(α2 − β2)

∫
R

p1(x − ξ)m(ξ)dξ − β2

(α2 − β2)

∫
R

p2(x − ξ)m(ξ)dξ .

By the Sobolev’s embedding ‖ux‖∞ ≤ ‖u‖H4 , it tells us if H4-norm of the solution is bounded, then the L∞-norm of the first derivative is
bounded.

By the same argument, we can get the similar result for b < 1
2 . So, we omit the details and complete the proof of Theorem 2.3.

3. GLOBAL EXISTENCE

In this section, we study the global existence. Before going to our main results, we give the particle trajectory as{
qt = u(q, t), 0 < t < T, x ∈ R,
q(x, 0) = x, x ∈ R, (3.1)

where T is the lifespan of the solution. Taking derivative (3.1) with respect to x, we obtain
dqt
dx

= qtx = ux(q, t)qx, t ∈ (0, T).

Therefore {
qx = exp{∫ t

0 ux(q, s)ds}, 0 < t < T, x ∈ R,
qx(x, 0) = 1, x ∈ R,

which is always positive before the blow-up time. Therefore, the function q(x, t) is an increasing diffeomorphism of the line before blow-up.
In fact, direct calculation yields

d
dt

(m(q)qb
x) = [mt(q) + u(q, t)mx(q) + bux(q, t)m(q)]qb

x = 0.

Hence, we have the following identity

m(q)qb
x = m0(x), 0 < t < T, x ∈ R. (3.2)

Theorem 3.1. Assume that u0 ∈ H4(R), α �= β, α > 0, β > 0, if b = 1
2 or b = 2, then the corresponding solution of FOCH model (1.1) will

exist globally in time.

Remark 3.1. If α = 0 or β = 0, system (1.1) reduce to the well-known b-family equation. The global existence for b = 1
2 and Theorem 3.2 can

be reduce to the results for b-family equation [18]. The global existence for b = 2 is the new discovery compared to the b-family equation.

Proof. Let

E(t) =
∫
R

u2 + (α2 + β2)u2
x + α2β2u2

xxdx.

Differentiating E(t), we have
d
dt

E(t) =
∫
R

2uut + 2(α2 + β2)uxuxt + 2α2β2uxxuxxtdx

=
∫
R

2uut − 2(α2 + β2)uuxxt + 2α2β2uuxxxxtdx

= 2
∫
R

umtdx

= (b − 2)

∫
R

u2mxdx.
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It yields that E(t) = E(0) when b = 2. By the Sobolev’s imbedding, we have

‖ux‖L∞ ≤ ‖u‖2
H2 ≤ CE(t) = CE(0).

The global existence for b = 2 is completed by Theorem 2.3. Applying m on (1.1) and integration by parts, we obtain

d
dt

∫
R

m2dx = −2
∫
R

buxm2 + mmxudx

= −2
∫
R

buxm2 − m2

2
uxdx

= (1 − 2b)

∫
R

uxm2dx.

If b = 1
2 , then d

dt
∫
R

m2dx = 0. Hence,

‖u‖2
H4 ≤ ‖m‖2

L2 = ‖m0‖2
L2 .

It follows that the corresponding solution of FOCH model (1.1) exists globally when b = 1
2 .

Theorem 3.2. Supposing that u0 ∈ H4, α �= β, α > 0, β > 0, m0 = (1 − α2∂2
x )(1 − β2∂2

x )u0 does not change sign. Then the corresponding
solution to (1.1) exists globally.

Proof. We can assume that m0 ≥ 0. It is sufficient to prove ux is bounded for all t. In fact,

ux = 1
2(α2 − β2)

[
e

x
α

∫ +∞

x
e− ξ

α m(ξ , t)dξ − e− x
α

∫ x

−∞
e

ξ
α m(ξ , t)dξ

]

+ 1
2(α2 − β2)

[
e− x

β

∫ x

−∞
e

ξ
β m(ξ , t)dξ − e

x
β

∫ +∞

x
e− ξ

β m(ξ , t)dξ

]
.

If m0 ≥ 0, α > β > 0, then

ux = 1
2(α2 − β2)

[
e

x
α

∫ +∞

x
e− ξ

α m(ξ , t)dξ − e− x
α

∫ x

−∞
e

ξ
α m(ξ , t)dξ

]

+ 1
2(α2 − β2)

[
e− x

β

∫ x

−∞
e

ξ
β m(ξ , t)dξ − e

x
β

∫ +∞

x
e− ξ

β m(ξ , t)dξ

]

≤ 1
2(α2 − β2)

[
e

x
α

∫ ∞

x
e− ξ

α m(ξ , t)dξ + e− x
β

∫ x

−∞
e

ξ
β m(ξ , t)dξ

]

≤ 1
2(α2 − β2)

[
e

x
α e− x

α

∫ ∞

x
m(ξ , t)dξ + e− x

β e
x
β

∫ x

−∞
m(ξ , t)dξ

]

≤ 1
2(α2 − β2)

[∫
R

m(ξ , t)dξ +
∫
R

m(ξ , t)dξ

]

= 1
(α2 − β2)

∫
R

m0(ξ , t)dξ

and

ux = 1
2(α2 − β2)

[
e

x
α

∫ ∞

x
e− ξ

α m(ξ , t)dξ − e− x
α

∫ x

−∞
e

ξ
α m(ξ , t)dξ

]

+ 1
2(α2 − β2)

[
e− x

β

∫ x

−∞
e

ξ
β m(ξ , t)dξ − e

x
β

∫ +∞

x
e− ξ

β m(ξ , t)dξ

]

≥ 1
2(α2 − β2)

[
−e− x

α

∫ x

−∞
e

ξ
α m(ξ , t)dξ − e

x
β

∫ +∞

x
e− ξ

β m(ξ , t)dξ

]

≥ − 1
(α2 − β2)

∫
R

m(ξ , t)dξ

= − 1
(α2 − β2)

∫
R

m0(ξ , t)dξ .

That is

|ux| ≤ 1
(α2 − β2)

∫
R

m0(ξ , t)dξ .
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If m0 ≥ 0, 0 < α < β , then

ux = 1
2(α2 − β2)

[
e

x
α

∫ ∞

x
e− ξ

α m(ξ , t)dξ − e− x
α

∫ x

−∞
e

ξ
α m(ξ , t)dξ

]

+ 1
2(α2 − β2)

[
e− x

β

∫ x

−∞
e

ξ
β m(ξ , t)dξ − e

x
β

∫ +∞

x
e− ξ

β m(ξ , t)dξ

]

≤ 1
2(α2 − β2)

[
−e− x

α

∫ x

−∞
e

ξ
α m(ξ , t)dξ − e

x
β

∫ +∞

x
e− ξ

β m(ξ , t)dξ

]

≤ 1
2(α2 − β2)

[
−e− x

α e
x
α

∫ x

−∞
m(ξ , t)dξ − e

x
β e− x

β

∫ ∞

x
m(ξ , t)dξ

]

≤ 1
2(β2 − α2)

[∫
R

m(ξ , t)dξ +
∫
R

m(ξ , t)dξ

]

= 1
(β2 − α2)

∫
R

m0(ξ , t)dξ

and

ux = 1
2(α2 − β2)

[
e

x
α

∫ ∞

x
e− ξ

α m(ξ , t)dξ − e− x
α

∫ x

−∞
e

ξ
α m(ξ , t)dξ

]

+ 1
2(α2 − β2)

[
e− x

β

∫ x

−∞
e

ξ
β m(ξ , t)dξ − e

x
β

∫ +∞

x
e− ξ

β m(ξ , t)dξ

]

≥ 1
2(α2 − β2)

[
e

x
α

∫ ∞

x
e− ξ

α m(ξ , t)dξ + e− x
β

∫ x

−∞
e

ξ
β m(ξ , t)dξ

]

≥ − 1
(β2 − α2)

∫
R

m(ξ , t)dξ

= − 1
(β2 − α2)

∫
R

m0(ξ , t)dξ .

That is

|ux| ≤ 1
(β2 − α2)

∫
R

m0(ξ , t)dξ .

When m0 ≤ 0, via the similar approach that is used above, we could also obtain the global existence result. So, we omit the details and
complete the proof of Theorem 3.2.

4. INFINITE PROPAGATION SPEED

The main theorem reads as follows:

Theorem 4.1. Assume that the initial datum u0(x) ∈ H4(R) is compactly supported in [a, c], then for t ∈ (0, T), the corresponding solution
u(x, t) to the FOCH model (1.1) α �= β, α > 0, β > 0 has the following property:

u(x, t) =
{

α
2(α2−β2)

e− x
α E1(t) − β

2(α2−β2)
e− x

β E2(t), as x > q(c, t),
α

2(α2−β2)
e

x
α F1(t) − β

2(α2−β2)
e

x
β F2(t), as x < q(a, t),

where

E1(t) =
∫
R

e
x
α m(x, t)dx, F1(t) =

∫
R

e− x
α m(x, t)dx,

and

E2(t) =
∫
R

e
x
β m(x, t)dx, F2(t) =

∫
R

e− x
β m(x, t)dx,

denote continuous nonvanishing functions.

Furthermore, if α > 0, 0 < β ≤
√

3
2α, 0 ≤ b ≤ min{3 − 2β2

α2 , 5
3 }, E1(t) is strictly increasing function, while F1(t) is strictly decreasing function.

Similarly, if β > 0, 0 < α ≤
√

3
2 β, 0 ≤ b ≤ min{3 − 2α2

β2 , 5
3 }, E2(t) is strictly increasing function, while F2(t) is strictly decreasing function.
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Remark 4.1. Theorem 4.1 implies that the strong solution u(x, t) doesn’t have compact x-support for any t > 0 in its lifespan, although the
corresponding u0(x) is compactly supported.

Proof. Since u0(x) has a compact support in the interval [a, c], so does m0(x) = (1 − α2∂2
x )(1 − β2∂2

x )u0(x). Equation (3.2) tells us that
m(x) = (1 − α2∂2

x )(1 − β2∂2
x )u(x) is compactly supported in the interval [q(a, t), q(c, t)] in its lifespan. Hence the following functions are

well-defined

E1(t) =
∫
R

e
x
α m(x, t)dx, F1(t) =

∫
R

e− x
α m(x, t)dx,

E2(t) =
∫
R

e
x
β m(x, t)dx, F2(t) =

∫
R

e− x
β m(x, t)dx.

Using (3.2),

m(q(x, t), t) ≡ 0, x < a or x > c,

we know

u(x, t) =
(

α2

(α2 − β2)
p1 − β2

(α2 − β2)
p2

)
∗ m(x, t)

= α

2(α2 − β2)

∫
R

e− |x−ξ |
α m(ξ)dξ − β

2(α2 − β2)

∫
R

e− |x−ξ |
β m(ξ)dξ

= α

2(α2 − β2)

∫ q(c,t)

q(a,t)
e− |x−ξ |

α m(ξ)dξ − β

2(α2 − β2)

∫ q(c,t)

q(a,t)
e− |x−ξ |

β m(ξ)dξ .

Then, for x > q(c, t), we have

u(x, t) = α

2(α2 − β2)

∫ q(c,t)

q(a,t)
e− x−ξ

α m(ξ)dξ − β

2(α2 − β2)

∫ q(c,t)

q(a,t)
e− x−ξ

β m(ξ)dξ

= α

2(α2 − β2)
e− x

α

∫ q(c,t)

q(a,t)
e

ξ
α m(ξ)dξ − β

2(α2 − β2)
e− x

β

∫ q(c,t)

q(a,t)
e

ξ
β m(ξ)dξ

= α

2(α2 − β2)
e− x

α E1(t) − β

2(α2 − β2)
e− x

β E2(t). (4.1)

Similarly, when x < q(a, t), we have

u(x, t) = α

2(α2 − β2)

∫ q(c,t)

q(a,t)
e

x−ξ
α m(ξ)dξ − β

2(α2 − β2)

∫ q(c,t)

q(a,t)
e

x−ξ
β m(ξ)dξ

= α

2(α2 − β2)
e

x
α

∫ q(c,t)

q(a,t)
e− ξ

α m(ξ)dξ − β

2(α2 − β2)
e

x
β

∫ q(c,t)

q(a,t)
e− ξ

β m(ξ)dξ

= α

2(α2 − β2)
e

x
α F1(t) − β

2(α2 − β2)
e

x
β F2(t). (4.2)

On the other hand,

dE1(t)
dt

=
∫
R

e
ξ
α mt(ξ , t)dξ .

It is easy to get

mt = −mx − bmux

= [(α2 + β2)uxxx − α2β2uxxxxx − ux]u − b[u − (α2 + β2)uxx + α2β2uxxxx]ux

= (α2 + β2)uxxxu − α2β2uxxxxxu − (b + 1)uux + b(α2 + β2)uxxux − bα2β2uxxxxux. (4.3)
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Taking (4.3) into dE1(t)
dt , we obtain

dE1(t)
dt

=
∫
R

e
x
α mtdx

=
∫
R

e
x
α

[
(α2 + β2)uxxxu − α2β2uxxxxxu − (b + 1)uux + b(α2 + β2)uxxux − bα2β2uxxxxux

]
dx

= (α2 + β2)

∫
R

e
x
α uxxxudx − α2β2

∫
R

e
x
α uxxxxxudx − (b + 1)

∫
R

e
x
α uuxdx

+b(α2 + β2)

∫
R

e
x
α uxxuxdx − bα2β2

∫
R

e
x
α uxxxxuxdx

=
5∑

i=1
Ii. (4.4)

I1-I5 can be estimated as follows:

I1 = (α2 + β2)

∫
R

e
x
α uxxxudx

= −α2 + β2

2α3

∫
R

e
x
α u2dx + 3(α2 + β2)

2α

∫
R

e
x
α u2

xdx, (4.5)

I2 = −α2β2
∫
R

e
x
α uxxxxxudx

= β2

2α3

∫
R

e
x
α u2dx − 5β2

2α

∫
R

e
x
α u2

xdx + 5αβ2

2

∫
R

e
x
α u2

xxdx, (4.6)

I3 = −(b + 1)

∫
R

e
x
α uuxdx

= b + 1
2α

∫
R

e
x
α u2dx, (4.7)

I4 = b(α2 + β2)

∫
R

e
x
α uxxuxdx

= −b(α2 + β2)

2α

∫
R

e
x
α u2

xdx, (4.8)

I5 = −bα2β2
∫
R

e
x
α uxxxxuxdx

= bβ2

2α

∫
R

e
x
α u2

xdx − 3bαβ2

2

∫
R

e
x
α u2

xxdx. (4.9)

Combining (4.5)–(4.9) to (4.4), we have
dE1(t)

dt
=

∫
R

e
x
α mtdx

= b
2α

∫
R

e
x
α u2dx − (b − 3)α2 + 2β2

2α

∫
R

e
x
α u2

xdx + (5 − 3b)αβ2

2

∫
R

e
x
α u2

xxdx. (4.10)

For α > 0, 0 < β ≤
√

3
2α, 0 ≤ b ≤ min{3 − 2β2

α2 , 5
3 }, from (4.10), E1(t) is strictly increasing for nontrivial solution.

Similary,
dF1(t)

dt
=

∫
R

e− x
α mtdx

= − b
2α

∫
R

e− x
α u2dx + (b − 3)α2 + 2β2

2α

∫
R

e− x
α u2

xdx − (5 − 3b)αβ2

2

∫
R

e− x
α u2

xxdx. (4.11)

For α > 0, 0 < β ≤
√

3
2α, 0 ≤ b ≤ min{3 − 2β2

α2 , 5
3 }, from (4.11), F1(t) is strictly decreasing for nontrivial solution.

dE2(t)
dt

=
∫
R

e
x
β mtdx

= b
2β

∫
R

e
x
β u2dx − (b − 3)β2 + 2α2

2β

∫
R

e
x
β u2

xdx + (5 − 3b)βα2

2

∫
R

e
x
β u2

xxdx. (4.12)
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For β > 0, 0 < α ≤
√

3
2β , 0 ≤ b ≤ min{3 − 2α2

β2 , 5
3 }, from (4.12), E2(t) is strictly increasing for nontrivial solution.

dF2(t)
dt

=
∫
R

e− x
β mtdx

= − b
2β

∫
R

e− x
β u2dx + (b − 3)β2 + 2α2

2β

∫
R

e− x
β u2

xdx − (5 − 3b)βα2

2

∫
R

e− x
β u2

xxdx. (4.13)

For β > 0, 0 < α ≤
√

3
2β , 0 ≤ b ≤ min{3 − 2α2

β2 , 5
3 }, from (4.13), F2(t) is strictly decreasing for nontrivial solution.

This complete the proof of Theorem 4.1.

Remark 4.2. Let

u′(x, t) =
{

α
2(α2−β2)

e− x
α E1(t), as x > q(c, t),

α
2(α2−β2)

e
x
α F1(t), as x < q(a, t),

u′′(x, t) =
{

β

2(α2−β2)
e− x

β E2(t), as x > q(c, t),
β

2(α2−β2)
e

x
β F2(t), as x < q(a, t),

We rewrite u = u′ − u′′, as consequences of (4.1) and (4.2), we have

u′(x, t) = −αu′
x(x, t) = α2u′

xx(x, t) = α

2(α2 − β2)
e− x

α E1(t), as x > q(c, t),

u′(x, t) = αu′
x(x, t) = α2u′

xx(x, t) = α

2(α2 − β2)
e

x
α F1(t), as x < q(a, t).

and

u′′(x, t) = −βu′′
x(x, t) = β2u′′

xx(x, t) = β

2(α2 − β2)
e− x

β E2(t), as x > q(c, t),

u′′(x, t) = βu′′
x(x, t) = β2u′′

xx(x, t) = β

2(α2 − β2)
e

x
β F2(t), as x < q(a, t).

Theorem 4.2. Suppose the initial value u0(x) ∈ H4(R), m0 = (1 − α2∂2
x )(1 − β2∂2

x )u0, α > β > 0, m0 doesn’t change sign on R and u0 has
compact support in the interval [a, c]. Then for t ∈ (0, T), the corresponding solution u(x, t) of equation (1.1) satisfies

1
2(α + β)

e− x
α |E1(t)| ≤ u(x, t) ≤ α

2(α2 − β2)
e− x

α |E1(t)|, as x > q(c, t),

1
2(α + β)

e
x
α |F1(t)| ≤ u(x, t) ≤ α

2(α2 − β2)
e

x
α |F1(t)|, as x < q(a, t).

where

E1(t) =
∫
R

e
ξ
α m(ξ , t)dξ , F1(t) =

∫
R

e− ξ
α m(ξ , t)dξ ,

denote continuous nonvanishing functions.

Remark 4.3. We assume α > β > 0 to get the above conclusion in Theorem 4.2, because the position of α, β is symmetric, then β > α > 0,
we have results similar to the above conclusions about E2(t) = ∫

R
e

ξ
β m(ξ , t)dξ , F2(t) = ∫

R
e− ξ

β m(ξ , t)dξ ,

1
2(α + β)

e− x
β |E2(t)| ≤ u(x, t) ≤ β

2(β2 − α2)
e− x

β |E2(t)|, as x > q(c, t),

1
2(α + β)

e
x
β |F2(t)| ≤ u(x, t) ≤ β

2(β2 − α2)
e

x
β |F2(t)|, as x < q(a, t).

Theorem 4.2 can be seem as a generalization of the result in [20]. Comparing with Theorem 4.1, it show more detailed estimation by adding the
additional condition on m0.

Proof. If u0 has a compact support set [a, c], then the corresponding m0 also has a corresponding compact support set [a, c]. It is known
from (3.2) that m has the same compact support set [q(a, t), q(c, t)]. We define

u1 =
(

1 − β

α

)
· α

2(α2 − β2)

∫
R

e− |x−ξ |
α mdξ = 1

2(α + β)

∫
R

e− |x−ξ |
α mdξ ,

u2 = α

2(α2 − β2)

∫
R

e− |x−ξ |
α mdξ . (4.14)
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According to E1(t) = ∫
R

e
ξ
α m(ξ , t)dξ , F1(t) = ∫

R
e− ξ

α m(ξ , t)dξ , then

u1(x, t) = 1
2(α + β)

e− x
α E1(t), u2(x, t) = α

2(α2 − β2)
e− x

α E1(t), as x > q(c, t),

u1(x, t) = 1
2(α + β)

e
x
α F1(t), u2(x, t) = α

2(α2 − β2)
e

x
α F1(t), as x < q(a, t).

According to (4.1) and (4.14), we obtain

u2(x, t) − u(x, t) = β

2(α2 − β2)

∫
R

e− |x−ξ |
β mdξ ,

u(x, t) − u1(x, t) = β

2(α2 − β2)

∫
R

(
e− |x−ξ |

α − e− |x−ξ |
β

)
mdξ .

Then, we obtain {
u1(x, t) ≤ u(x, t) ≤ u2(x, t), m0 ≥ 0,
u2(x, t) ≤ u(x, t) ≤ u1(x, t), m0 ≤ 0.

If m0 ≥ 0, { 1
2(α+β)

e− x
α E1(t) ≤ u(x, t) ≤ α

2(α2−β2)
e− x

α E1(t), as x > q(c, t),
1

2(α+β)
e

x
α F1(t) ≤ u(x, t) ≤ α

2(α2−β2)
e

x
α F1(t), as x < q(a, t).

(4.15)

If m0 ≤ 0, {
α

2(α2−β2)
e− x

α E1(t) ≤ u(x, t) ≤ 1
2(α+β)

e− x
α E1(t), as x > q(c, t),

α
2(α2−β2)

e
x
α F1(t) ≤ u(x, t) ≤ 1

2(α+β)
e

x
α F1(t), as x < q(a, t).

(4.16)

The proof of Theorem 4.2 is finished.

5. LONG TIME BEHAVIOR FOR THE SUPPORT OF MOMENTUM DENSITY

After the global existence of solution is established, we will discuss the long time behavior for the support of momentum density of the FOCH
model. Now, we give the lemma and main theorem as follows:

Lemma 5.1. Let α > β > 0, Assume the initial value u0 �≡ 0 has a compact supported set [a, c].

(1). If m0(x) ≥ 0(�≡ 0), x ∈ [a, c], then we have
lim

t→+∞ F1(t) = 0.

(2). If m0(x) ≤ 0(�≡ 0), x ∈ [a, c], then we have
lim

t→+∞ E1(t) = 0.

Remark 5.1. By the same argument, we can get a similar conclusion for β > α > 0. If m0(x) ≥ 0(�≡ 0), x ∈ [a, c], then we have
lim

t→+∞ F2(t) = 0.

If m0(x) ≤ 0(�≡ 0), x ∈ [a, c], then we have
lim

t→+∞ E2(t) = 0.

Proof. (1) For m0(x) > 0, from (3.2), we have E1(t) > 0, F1(t) > 0, E2(t) > 0, F2(t) > 0, for all t ≥ 0. As F1(t) > 0, we claim that
lim

t→+∞ F1(t) = 0.

Otherwise, there is a constant ε0 > 0, for any T > 0, there will exist a t > T, such that F1(t) ≥ ε0.

For any d < a, from (4.15) we have
d
dt

q(d, t) = u(q(d, t), t) ≥ 1
2(α + β)

e
q(d,t)

α F1(t)

≥ 1
2(α + β)

e
q(d,t)

α ε0.
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It follows that

e− q(d,t)
α ≤ − ε0

2α(α + β)
t + e− d

α

α
.

Taking T = 2(α+β)
ε0

e− d
α , however, when t = T + 1,

− ε0
2α(α + β)

t + e− d
α

α
< 0,

This is the contradiction. So our claim is right.

(2). For m0(x) < 0, from (3.2), we have E1(t) < 0, F1(t) < 0, E2(t) < 0, F2(t) < 0, for all t ≥ 0. As F1(t) > 0, we claim that

lim
t→+∞ E1(t) = 0.

Otherwise, there is a constant ε0 > 0, for any T > 0, for any T > 0, there will exist a t > T, such that E1(t) ≤ −ε0.

For any h > c, from (4.16) we have

d
dt

q(h, t) = u(q(h, t), t) ≤ 1
2(α + β)

e− q(h,t)
α E1(t)

≤ − ε0
2(α + β)

e− q(h,t)
α .

It follows that

e
q(h,t)

α ≤ − ε0
2α(α + β)

t + e− d
α

α
.

Taking T = 2(α+β)
ε0

e− d
α , however, when t = T + 1,

− ε0
2α(α + β)

t + e− d
α

α
< 0,

This is the contradiction. So our claim is right.

Theorem 5.2. If b > 1, α > β > 0, and suppose that m0(x) ∈ L 1
b

and u0(x) has a compact supported set [a, c].

(1). If m0(x) ≥ 0(�≡ 0), x ∈ [a, c], then we have

e
q(c,t)

α(b−1) − e
q(a,t)

α(b−1) −→ +∞, as t −→ +∞. (5.1)

(2). If m0(x) ≤ 0(�≡ 0), x ∈ [a, c], then we have

e− q(a,t)
α(b−1) − e− q(c,t)

α(b−1) −→ +∞, as t −→ +∞. (5.2)

Remark 5.2. For the case β > α > 0, by using the properties of E2 and F2 in Remark 5.1, one can replace α with β in (5.1) and (5.2).

Proof. (1) By (3.2) and direct calculation, we have(∫ c

a
(m0)

1
b dx

)b
=

(∫ c

a
(m(q, t)qb

x)
1
b dx

)b
=

(∫ c

a
(m(q, t))

1
b qxdx

)b

=
(∫ q(c,t)

q(a,t)
(m(ξ , t))

1
b dξ

)b

≤
(∫ q(c,t)

q(a,t)
m(ξ , t)e− ξ

α dξ

)[∫ q(c,t)

q(a,t)
e

ξ
α(b−1) dξ

]b−1

= F1(t)
[
α(b − 1)

(
e

q(c,t)
α(b−1) − e

q(a,t)
α(b−1)

)](b−1)

.
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It follows

[
α(b − 1)

(
e

q(c,t)
α(b−1) − e

q(a,t)(b−1)
α

)](b−1)

≥
(∫ c

a (m0)
1
b dx

)b

F1(t)
.

Using the limit

lim
t→+∞ F1 = 0,

we can get

e
q(c,t)

α(b−1) − e
q(a,t)

α(b−1) −→ +∞, as t −→ +∞.

(2). Direct calculation, we have(∫ c

a
(−m0)

1
b dx

)b
=

(∫ c

a
(−m0)

1
b dx

)b
=

(∫ c

a
(−m(q, t)qb

x)
1
b dx

)b

=
(∫ c

a
(−m(q, t))

1
b qxdx

)b
=

(∫ q(c,t)

q(a,t)
(−m(ξ , t))

1
b dξ

)b

≤
(∫ q(c,t)

q(a,t)

(
−m(ξ , t)e

ξ
α

)
dξ

) [∫ q(c,t)

q(a,t)
e− ξ

α(b−1) dξ

]b−1

= −E1(t)
[
α(b − 1)(e− q(a,t)

α(b−1) − e− q(c,t)
α(b−1) )

]b−1
.

It follows

[
α(b − 1)

(
e− q(a,t)

α(b−1) − e− q(c,t)
α(b−1)

)]b−1
≥

(∫ c
a (−m0)

1
b dx

)b

−E1(t)
.

Using the limit

lim
t→+∞ E1 = 0,

we can obtain

e− q(a,t)
α(b−1) − e− q(c,t)

α(b−1) −→ +∞, as t −→ +∞.

Theorem 5.3. If b = 1, suppose that m0(x) ∈ L1 and u0(x) has a compact supported set [a, c].

(1). If m0(x) ≥ 0(�≡ 0), x ∈ [a, c], then we have

q(c, t) −→ +∞, as t −→ +∞.

(2). If m0(x) ≤ 0(�≡ 0), x ∈ [a, c], then we have

q(a, t) −→ −∞, as t −→ +∞.

Proof. We only present the proof for α > β > 0. The case β > α > 0 can be proved by the same argument. (1) As m0(x) ≥ 0, for any
t ≥ 0, we have F1(t) > 0. According to Lemma 5.1, we know

lim
t→+∞ F1(t) = 0.

Direct calculation, we have ∫ c

a
m0dx =

∫ c

a
m(q, t)qxdx ≤ e

q(c,t)
α

∫ q(c,t)

q(a,t)
m(ξ , t)e− ξ

α dξ = e
q(c,t)

α F1(t).

It follows

e
q(c,t)

α ≥
∫ c

a m0dx
F1(t)

−→ +∞, as t −→ +∞,
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then we can get

q(c, t) −→ +∞, as t −→ +∞.

(2). As m0(x) ≤ 0, for any t ≥ 0, we have E1(t) < 0. According to Lemma 5.1, we know

lim
t→+∞ E1(t) = 0.

Direct calculation, we have ∫ c

a
(−m0)dx =

∫ c

a
(−m(q, t)qx)dx

≤ e− q(a,t)
α

∫ q(c,t)

q(a,t)
(−m(ξ , t))e

ξ
α dξ = −e− q(a,t)

α E1(t).

It follows

e− q(a,t)
α ≥

∫ c
a (−m0)dx
−E1(t)

−→ +∞, as t −→ +∞,

then we can get

q(a, t) −→ −∞, as t −→ +∞.

Theorem 5.4. If 0 < b < 1, α > β > 0, m0(x) ∈ L 1
b

or b = 0, m0 ∈ L∞. Suppose that u0(x) has a compact supported set [a, c].

(1). If m0(x) ≥ 0(�≡ 0) for x ∈ [a, c], then we have

e
q(c,t)

α − e
q(a,t)

α −→ +∞, as t −→ +∞. (5.3)

(2). If m0(x) ≤ 0(�≡ 0) for x ∈ [a, c], then we have

e− q(a,t)
α − e− q(c,t)

α −→ +∞, as t −→ +∞. (5.4)

Remark 5.3. For the case β > α > 0, by using the properties of E2 and F2 in Remark 5.1, one can replace α with β in (5.3) and (5.4).

Proof. (1). For m0(x) ≥ 0, we have F1(t) > 0 for all t ≥ 0. From Lemma 5.1, we know

lim
t→+∞ F1(t) = 0.

According to the conservation law ∫
R

mdx =
∫
R

m0dx,
∫
R

m
1
b dx =

∫
R

m
1
b
0 dx.

If 0 < b < 1 and

⎧⎨
⎩

γ + η
b = 1,

2γ + η = 1,
0 < γ , η < 1.


⇒
{

0 < η = 2
2−b − 1 < 1,

0 < γ = 1 + 1
b−2 < 1.

By direct calculation, we obtain ∫
R

m0dx =
∫
R

mdx =
∫
R

m(q, t)qxdx

=
[∫ c

a

(
me− q

α qx
)γ (

m
1
b qx

)η (
e

q
α qx

)γ

dx
]

≤
(∫ c

a
me− q

α qxdx
)γ (∫ c

a
m

1
b qxdx

)η (∫ c

a
e

q
α qxdx

)γ

=
(∫ q(c,t)

q(a,t)
me− ξ

α dξ

)γ (∫
R

m
1
b dξ

)η
(∫ q(c,t)

q(a,t)
e

ξ
α dξ

)γ

= (F1(t))γ
(∫

R

m
1
b dξ

)η
(∫ q(c,t)

q(a,t)
e

ξ
α dξ

)γ

= (F1(t))γ
(∫

R

m
1
b
0 dξ

)η (
αe

q(c,t)
α − αe

q(a,t)
α

)γ

.
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It follows (
αe

q(c,t)
α − αe

q(a,t)
α

)γ

≥
∫
R

m0dx

(F1(t))γ
(∫

R
m

1
b
0 dξ

)η −→ +∞,

then we can obtain

e
q(c,t)

α − e
q(a,t)

α −→ +∞, as t −→ +∞.

If b = 0, we can obtain ∫
R

m0dx = lim
b→0

∫
R

mdx =
∫
R

m(q, t)qxdx

= lim
b→0

[∫ c

a

(
me− q

α qx
)γ (

m
1
b qx

)η (
e

q
α qx

)γ

dx
]

≤ lim
b→0

(∫ c

a
me− q

α qxdx
)γ (∫ c

a
m

1
b qxdx

)η (∫ c

a
e

q
α qxdx

)γ

= lim
b→0

(∫ q(c,t)

q(a,t)
me− ξ

α dξ

)γ (∫
R

m
1
b dξ

)η
(∫ q(c,t)

q(a,t)
e

ξ
α dξ

)γ

= lim
b→0

(F1(t))γ
(∫

R

m
1
b dξ

)η
(∫ q(c,t)

q(a,t)
e

ξ
α dξ

)γ

= lim
b→0

(F1(t))γ
(∫

R

m
1
b
0 dξ

)η (
αe

q(c,t)
α − αe

q(a,t)
α

)γ

.

It follows (
αe

q(c,t)
α − αe

q(a,t)
α

)γ ≥
∫
R

m0dx

(F1(t))γ
(

limb→0
∫
R

m
1
b
0 dξ

)η −→ +∞,

then we can obtain

e
q(c,t)

α − e
q(a,t)

α −→ +∞, as t −→ +∞.

(2). For m0(x) ≤ 0, we have E1(t) < 0 for all t ≥ 0. From Lemma 5.1, we know

lim
t→+∞ E1(t) = 0.

Similarly, according to the conservation law ∫
R

mdx =
∫
R

m0dx,
∫
R

m
1
b dx =

∫
R

m
1
b
0 dx.

If 0 < b < 1 and

⎧⎨
⎩

γ + η
b = 1,

2γ + η = 1,
0 < γ , η < 1.


⇒
{

0 < η = 2
2−b − 1 < 1,

0 < γ = 1 + 1
b−2 < 1.

By direct calculation, we obtain

−
∫
R

m0dx = −
∫
R

mdx = −
∫
R

m(q, t)qxdx

=
[∫ c

a

(
−me

q
α qx

)γ (
(−m)

1
b qx

)η (
e− q

α qx
)γ

dx
]

≤
(∫ c

a
−me

q
α qxdx

)γ (∫ c

a
(−m)

1
b qxdx

)η (∫ c

a
e− q

α qxdx
)γ

=
(∫ q(c,t)

q(a,t)
−me

ξ
α dξ

)γ (∫
R

(−m)
1
b dξ

)η
(∫ q(c,t)

q(a,t)
e− ξ

α dξ

)γ
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= (−E1(t))γ
(∫

R

m
1
b dξ

)η
(∫ q(c,t)

q(a,t)
e− ξ

α dξ

)γ

= (−E1(t))γ
(∫

R

m
1
b
0 dξ

)η (
αe− q(a,t)

α − αe− q(c,t)
α

)γ

.

It follows (
αe− q(a,t)

α − αe− q(c,t)
α

)γ

≥ − ∫
R

m0dx

(−E1(t))γ
(∫

R
(−m0)

1
b dξ

)η −→ +∞,

then we can obtain

e− q(a,t)
α − e− q(c,t)

α −→ +∞, as t −→ +∞.

If b = 0, we can obtain

−
∫
R

m0dx = − lim
b→0

∫
R

mdx = −
∫
R

m(q, t)qxdx

= lim
b→0

[∫ c

a

(
−me

q
α qx

)γ (
(−m)

1
b qx

)η (
e− q

α qx
)γ

dx
]

≤ lim
b→0

(∫ c

a
−me

q
α qxdx

)γ (∫ c

a
(−m)

1
b qxdx

)η (∫ c

a
e− q

α qxdx
)γ

= lim
b→0

(∫ q(c,t)

q(a,t)
−me

ξ
α dξ

)γ (∫
R

(−m)
1
b dξ

)η
(∫ q(c,t)

q(a,t)
e− ξ

α dξ

)γ

= lim
b→0

(−E1(t))γ
(∫

R

m
1
b dξ

)η
(∫ q(c,t)

q(a,t)
e− ξ

α dξ

)γ

= lim
b→0

(−E1(t))γ
(∫

R

m
1
b
0 dξ

)η (
αe− q(a,t)

α − αe− q(c,t)
α

)γ

.

It follows (
αe− q(a,t)

α − αe− q(c,t)
α

)γ ≥ − ∫
R

m0dx

(−E1(t))γ
(

limb→0
∫
R
(−m0)

1
b dξ

)η −→ +∞,

then we can obtain

e− q(a,t)
α − e− q(c,t)

α −→ +∞, as t −→ +∞.

6. CONCLUSION

We have considered the FOCH model α �= β , α > 0, β > 0. When α, β is negative, one can get the same results by taking absolute value |α|
and |β|. This model is highly related to the classical Camassa-Holm equation, the Degasperis-Procesi equation and the Holm-Staley b-family
equation. We have studied some mathematical property, such as global existence, infinite propagation speed and long time behavior of the
support of momentum density. Another highly related equation is (1.1) with α = β . Due to (1.1) with α = β doesn’t have the structure in
Lemma 2.2 and (2.1), some results in this manuscript may can’t been realized for α = β .
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ABSTRACT
Based on the Nambu 3-bracket and the operators of the KP hierarchy, we propose the generalized Lax equation of the Lax triple.
Under the operator constraints, we construct the generalized KdV hierarchy and Boussinesq hierarchy. Moreover, we present the
exact solutions of some nonlinear evolution equations.
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1. INTRODUCTION

Nambu mechanics [8] is a generalization of classical Hamiltonian mechanics based on Liouville theorem. Poisson brackets in Hamilton
mechanics are replaced by Nambu brackets. Based on Nambu brackets, Nambu 3-algebra [10] is introduced. It is a natural generalization
of Lie Algebra with high structure. 3-algebra has been widely applied in string theory and M-branches [1,9]. In recent years, the
relationship between infinite dimensional 3-algebra and integrable system has attracted wide attention in the framework of Nambu
mechanics [2,3,14].

The Kadomtsev-Petviashvili (KP) hierarchy [5–7,13] is an important classical integrable system. There are different approaches to the
description of the KP hierarchy. One of them is described in terms of a Lax pair (Bn, L). By means of the operator Nambu 3-bracket, the
generalized Lax equation of the KP hierarchy with the Lax triple (Bm, Bn, L) was studied in [12], where the KP equation and other integrable
(nonintegrable) equations were derived, and the soliton wave solutions of the nonlinear evolution equations were provided. The BKP and CKP
hierarchies are two important reductions of the KP hierarchy. When the operator L satisfies the constraints L∗ = −∂L∂−1 and L∗ = −L,
the KP hierarchy becomes the BKP and CKP hierarchies, respectively. The dKP hierarchy is the quasi classical limit of the KP hierarchy.
Based on the Lax triple (Bm, Bn, L), the generalized BKP, CKP and dKP hierarchies were investigated [4,11]. When the operator L satisfies
the constraints (L2)− = 0 and (L3)− = 0, the KP hierarchy becomes the KdV and Boussinesq hierarchies, respectively. Both KdV equation
and Boussinesq equation are derived from the study of shallow water waves. They both contain N-soliton solutions. Boussinesq equation
can be considered as a generalization of KdV equation, which allows solitons to propagate in two directions. The aim of this paper is to
derive the nonlinear evolution equations from the generalized Lax equation in term of the Lax triple (Bm, Bn, L) of the KdV and Boussinesq
hierarchies.

This paper is arranged as follows. In Section 2, the generalized Lax equation of KP hierarchy and operator constraints is introduced. In
Sections 3 and 4, we give the generalized KdV and Boussinesq hierarchies, respectively. Finally, a short conclusion and further discussion
are presented.
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2. GENERALIZED LAX EQUATION

The KP hierarchy can be derived from the well-known Lax equation,
∂L
∂tn

= [Bn, L] = BnL − LBn, n = 1, 2, · · · . (2.1)

Here Bn = (Ln)+, n ≥ 1. L is a pseudo-differential operator,

L = ∂ +
+∞∑
i=0

vi(t)∂−i−1, (2.2)

where t = (t1, t2, · · · ) are the time variables and ∂ = ∂/∂x, x = t1, the negative powers of ∂ are to be understood as the formal integration
symbols.

As the operator L satisfies the constraints (L2)− = 0 and (L3)− = 0, respectively, we can derive the KdV hierarchy and Boussinesq hierarchy
from the Lax equation (2.1). Here (Lk)−, k = 2, 3, denotes the integral part of Lk,

(Lk)− = Lk − (Lk)+ = Lk − Bk.

The constraints (Lk)− = 0 means [Bkn, Bk] = 0, n = 1, 2, . . . , thus we can derive

∂Lk

∂tkn
= 0, k = 2, 3, n = 1, 2, . . . . (2.3)

Based on the operator Nambu 3-bracket, the generalized Lax equation with respect to the Lax triple (L, Bn, Bm)[12] is defined by
∂L

∂tmn
= [Bm, Bn, L]−, (m, n = 0, 1, 2 · · · ), (2.4)

where B0 = 1. The operator Nambu 3-bracket [, , ]− denotes the formal integration operator part of the derived pseudo-differential operator.

Taking Bm = B0 in (2.4), it is easy to verify that (2.4) leads to the Lax equation (2.1). Thus it is natural to derive the KP hierarchy from
(2.4). As the operator L satisfy the constraints (L2)− = 0 and (L3)− = 0, respectively, we can also derive the KdV hierarchy and Boussinesq
hierarchy.

In the following, we will list the usual KdV hierarchy and Boussinesq hierarchy. And we also will derive the generalized KdV hierarchy and
Boussinesq hierarchy from the generalized Lax equation (2.4).

3. GENERALIZED KdV HIERARCHY

Equating the coefficients of the operator ∂−i(i = 1, 2, · · · ) in the constraints (L2)− = 0, we can derive

v1 = −1
2

v0,x,

v2 = −1
2

v2
0 + 1

4
v0,xx,

v3 = 3
2

v0v0,x − 1
8

v0,xxx,

v4 = −7
4

v0v0,xx + 1
2

v3
0 − 11

8
v2

0,x + 1
16

v0,xxxx,

v5 = 15
8

v0v0,xxx + 15
4

v0,xv0,xx − 15
4

v0,xv2
0 − 1

32
v0,xxxxx,

.... (3.1)

Then we can derive Bn of the KdV hierarchy are

B1 = ∂ ,
B2 = ∂2 + 2v0,

B3 = ∂3 + 3v0∂ + 3
2

v0,x,

B4 = ∂4 + 4v0∂
2 + 4v0,x∂ + 4v2

0 + 2v0,xx,

B5 = ∂5 + 5v0∂
3 + 15

2
v0,x∂

2 +
(

15
2

v2
0 + 25

4
v0,xx

)
∂ + 15

2
v0v0,x + 15

8
v0,xxx,
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B6 = ∂6 + 6v0∂
4 + 12v0,x∂

3 + (12v2
0 + 14v0,xx)∂

2 + (24v0v0,x + 8v0,xxx)∂

+ 2v0,xxxx + 12v0v0,xx + 8v3
0 + 8v2

0,x,

B7 = ∂7 + 7v0∂
5 + 35

2
v0,x∂

4 +
(

35
2

v2
0 + 105

4
v0,xx

)
∂3 +

(
105

2
v0v0,x + 175

8
v0,xxx

)
∂2

+
(

35
2

v3
0 + 175

4
v0v0,xx + 245

8
v2

0,x + 161
16

v0,xxxx

)
∂ + 63

32
v0,xxxxx

+ 105
8

v0v0,xxx + 105
4

v0,xv0,xx + 105
4

v2
0v0,x

..., (3.2)

Taking Bm = B0, we list some evolution equations of the KdV hierarchy as follows:

• For the case of Bn = B3, we have
∂v0
∂t03

= 1
4

v0,xxx + 3v0,xv0, (3.3)

which is the well-known KdV equation. Under the scaling transformation v0 = 1
2 u, t03 = 4t, (3.3) becomes the usual KdV equation.

• For the case of Bn = B5, we have
∂v0
∂t05

= 1
16

v0,xxxxx + 5
4

v0v0,xxx + 5
2

v0,xv0,xx + 15
2

v0,xv2
0. (3.4)

Under the scaling transformation v0 = 1
2 u, t05 = 16t, (3.4) becomes the usual 5-order KdV equation.

• For the case of Bn = B7, we have
∂v0
∂t07

= 1
64

v0,xxxxxxx + 7
16

v0v0,xxxxx + 21
16

v0,xv0,xxxx + 35
16

v0,xxv0,xxx

+35
2

v0v0,xv0,xx + 35
8

v2
0v0,xxx + 35

8
v3

0,x + 35
2

v0,xv3
0. (3.5)

Under the scaling transformation v0 = 1
2 u, t07 = 64t, (3.5) becomes the usual 7-order KdV equation.

In the following, we will list some evolution equations of the generalized KdV hierarchy from the generalized Lax equation (2.4) except
Bm = B0. We also get the single soliton solution of some nonlinear evolution equations.

• Taking the operator pair (B1, B2) in (2.4), we have

∂v0
∂t12

= −1
4

v0,xxx + v0v0,x. (3.6)

Under the scaling transformation v0 = − 3
2 u, t12 = −4t, (3.6) becomes the usual KdV equation.

• Taking the operator pair (B1, B3) in (2.4), we have

∂v0
∂t13

= 0. (3.7)

• Taking the operator pair (B1, B4) in (2.4), we have

∂v0
∂t14

= − 1
16

v0,xxxxx + 11
4

v0v0,xxx + 7
2

v0,xv0,xx + 9
2

v0,xv2
0. (3.8)

Its single soliton solution is

v0 = 5(3 sec h2ξ − 1)(5
√

41 − 33)k2

−21 + 9
√

41
, (3.9)

where ξ = k(ωt + x) + b in which

ω = (−1019699 + 159231
√

41)k4

−33606 + 5214
√

41
,

b and k are arbitrary constants.
• Taking the operator pair (B2, B3) in (2.4), we have

∂v0
∂t23

= 1
16

v0,xxxxx + 1
2

v0v0,xxx + 9
4

v0,xv0,xx − 3v0,xv2
0. (3.10)
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Its single soliton solution is

v0 = −5k2

2
(3 sec h2ξ − 1), (3.11)

where ξ = k(ωt + x) + b in which ω = − 51k4

4 , b and k are arbitrary constants.

• Taking the operator pairs (B1, B5) and (B2, B4) in (2.4), we have
∂v0
∂t15

= ∂v0
∂t24

= 0. (3.12)

• Taking the operator pair (B1, B6) in (2.4), we have
∂v0
∂t16

= − 1
64

v0,xxxxxxx + 57
16

v0v0,xxxxx + 119
16

v0,xv0,xxxx + 125
16

v0,xxv0,xxx

+35
2

v0v0,xv0,xx + 45
8

v2
0v0,xxx + 25

8
v3

0,x + 25
2

v0,xv3
0. (3.13)

• Taking the operator pair (B2, B5) in (2.4), we have
∂v0
∂t25

= 1
64

v0,xxxxxxx + 1
4

v0v0,xxxxx + 5
4

v0,xv0,xxxx + 35
16

v0,xxv0,xxx

+35
4

v0v0,xv0,xx + 5
8

v2
0v0,xxx + 15

4
v3

0,x − 15
2

v0,xv3
0. (3.14)

• Taking the operator pair (B3, B4) in (2.4), we have
∂v0
∂t34

= − 1
64

v0,xxxxxxx + 1
2

v0v0,xxxxx − 1
4

v0,xv0,xxxx − 27
16

v0,xxv0,xxx

+141
4

v0v0,xv0,xx + 75
8

v2
0v0,xxx + 33

4
v3

0,x + 27
2

v0,xv3
0. (3.15)

• Taking the operator pairs (B1, B7), (B2, B6) and (B3, B5) in (2.4), we have
∂v0
∂t17

= ∂v0
∂t26

= ∂v0
∂t35

= 0. (3.16)

From the above evolution equations, we can conjecture that when m + n is even, the nonlinear evolution equation is ∂v0
∂tmn

= 0.

4. GENERALIZED BOUSSINESQ HIERARCHY

Equating the coefficients of the operator ∂−i(i = 1, 2, · · · ) in the constraints (L3)− = 0, we can derive

v2 = −v2
0 − 1

3
v0,xx − v1,x,

v3 = 2v0v0,x + 1
3

v0,xxx − 2v0v1 + 2
3

v1,xx,

v4 = −v0v0,xx + 5
3

v3
0 − v2

0,x − 2
9

v0,xxxx + 4v0v1,x + 3v1v0,x − v2
1 − 1

3
v1,xxx,

v5 = −10v0,xv2
0 + 5v2

0v1 + 5v1v1,x − 20
3

v0,xv1,x − 10
3

v1v0,xx − 5v0v1,xx

+1
9

v0,xxxxx + 1
9

v1,xxxx,

.... (4.1)
Then we can derive Bn of the Boussinesq hierarchy are

B1 = ∂ ,
B2 = ∂2 + 2v0,
B3 = ∂3 + 3v0∂ + 3v0,x + 3v1,

B4 = ∂4 + 4v0∂
2 + (4v1 + 6v0,x)∂ + 2v2

0 + 8
3

v0,xx + 2v1,x,

B5 = ∂5 + 5v0∂
3 + (5v1 + 10v0,x)∂

2 + (5v2
0 + 25

3
v0,xx + 5v1,x)∂ + 10v0v1

+10
3

v1,xx + 10v0v0,x + 10
3

v0,xxx, (4.2)
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Similarly, when m = 0, we can list some evolution equations of the Boussinesq hierarchy as follows:

• For the case of Bn = B2, we have
∂v0
∂t02

= v0,xx + 2v1,x,

∂v1
∂t02

= −2
3

v0,xxx − 2v0,xv0 − v1,xx, (4.3)

Eliminating v1, replacing v0 with −u, and replacing t02 with t, we can get

3
∂2u
∂t2 + (uxxx − 12uux)x = 0, (4.4)

which is the well-known Boussinesq equation.
• For the case of Bn = B4, we have

∂v0
∂t04

=
(

1
3

v0,xxx + 2v0v0,x + 4v0v1 + 2
3

v1,xx

)
x

,

∂v1
∂t04

= −2
9

v0,xxxxx − 2v0v0,xxx − 40,xv0,xx − 4v2
0v0,x − 2(v0v1,x)x − 1

3
v1,xxxx + 4v1v1,x. (4.5)

Under the scaling transformation v0 = 1
3 u, v1 = − 1

3 v, t04 = −t, (4.5) becomes the second equation of the Boussinesq hierarchy,

∂u
∂t

=
(

−1
3

uxxx − 2
3

uux + 4
3

uv + 2
3

vxx

)
x

,

∂v
∂t

= −2
9

uxxxxx − 2
3

uuxxx − 4
3

uxuxx − 4
9

u2ux + 2
3
(uvx)x + 1

3
vxxxx + 4

3
vvx. (4.6)

• For the case of Bn = B5, we have
∂v0
∂t05

= 10v1v1,x − 5v0,xv2
0 + 5(v0,xv1)x − 5

3
(v0v0,xx)x − 1

9
v0,xxxxx,

∂v1
∂t05

=
(

−5v1v1,x − 5v2
0v1 − 10

3
(v0,xv1)x − 5

3
v0v1,xx − 1

9
v1,xxxx

)
x

. (4.7)

Under the scaling transformation v0 = 1
3 u, v1 = − 1

3 v, t05 = −t, (4.7) becomes the third equation of the Boussinesq hierarchy,
∂u
∂t

= −10
3

vvx + 5
9

uxu2 + 5
3
(uxv)x + 5

9
(uuxx)x + 1

9
uxxxxx,

∂v
∂t

=
(

−5
3

vvx + 5
9

u2v + 10
9

(uxv)x + 5
9

uvxx + 1
9

vxxxx

)
x

. (4.8)

In the following, we will list some evolution equations of the generalized Boussinesq hierarchy from the generalized Lax equation (2.4)
except Bm = B0.

• Taking the operator pair (B1, B2) in (2.4), we have
∂v0
∂t12

= −1
3

v0,xxx,

∂v1
∂t12

= 4v1v0,x − 4v0v1,x − 2v0v0,xx + 2v2
0,x − 1

3
v1,xxx. (4.9)

• Taking the operator pair (B1, B3) in (2.4), we have
∂v0
∂t13

= (2v0v1 + v0v0,x − 2
3

v1,xx − 1
3

v0,xxx)x,

∂v1
∂t13

= (2v0v0,xx + 2
9

v0,xxxx + 1
3

v1,xxx − v0v1,x + v2
1 − 2

3
v3

0)x. (4.10)

• Taking the operator pair (B1, B4) in (2.4), we have
∂v0
∂t14

= (−v3
0 + 3v2

1 + 3v1v0,x + 3v0v0,xx + 2v2
0,x

)
x ,

∂v1
∂t14

= −3(v1v1,x)x − 6v1v0v0,x + 6v1v0,xxx − 4v0,xxv2
0 − 11v1,xv2

0 + 7
3

v1,xxv0,x

+4v0,xxv1,x + 5
3

v0v1,xxx + 2
3

v0,xv0,xxx − 2
3

v0v0,xxxx. (4.11)
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• Taking the operator pair (B2, B3) in (2.4), we have

∂v0
∂t23

=
(

−4
3

v3
0 + 2v2

1 + 2v1v0,x + v0v0,xx + 2v2
0,x + 1

9
v0,xxxx

)
x

,

∂v1
∂t23

= −2v2
1,x − 5v1v1,xx + 2v1v0v0,x − 7

3
v1v0,xxx + 3v0,xxv2

0 + 2v1,xv2
0 + 4v1,xxv0,x

+v0,xxv1,x + 5v0v1,xxx − 2
3

v0,xv0,xxx + 2v0v0,xxxx + 2v2
0,xv0 − v2

0,xx + 1
9

v1,xxxxx. (4.12)

• Taking the operator pair (B1, B5) in (2.4), we have

∂v0
∂t15

= −1
9

v0,xxxxxx + 20
3

v2
0,xx − 2

9
v1,xxxxx + 20

3
v0,xv1,xx + 40

3
v0,xxv1,x

+10
3

v0v1,xxx + 10v1v0,xxx + 25
3

v0,xxxv0,x + 5
3

v0v0,xxxx,

∂v1
∂t15

= 1
9

v1,xxxxxx + 2
27

v0,xxxxxxx − 100
3

v0v0,xv0,xx − 20v1,xv1v0 − 10v1,xv0,xv0

+10
9

v0,xxxxv0,x − 70
9

v0,xxxv0,xx + 4
3

v0v0,xxxxx − 10v2
0v0,xxx + 20

3
v1,xv1,xx

+20
3

v3
0v0,x + 10v2

1v0,x + 10v1v2
0,x − 25

3
v0,xxxv1,x + 10v1v1,xxx

−5
3

v0v1,xxxx − 20
3

v1,xxv0,xx − 10
3

v3
0,x − 10v0,xxv1v0. (4.13)

• Taking the operator pair (B2, B4) in (2.4), we have

∂v0
∂t24

= 1
9

v0,xxxxxx + 3v2
0,xx + 2

9
v1,xxxxx + 13v0,xv1,xx + 6v0,xxv1,x + 22

3
v0v1,xxx + 1

3
v1v0,xxx

+20
3

v0,xxxv0,x + 11
3

v0v0,xxxx − 12v1v0,xv0 − 3v0,xxv2
0 − 6v1,xv2

0 − 6v2
0,xv0,

∂v1
∂t24

= −1
9

v1,xxxxxx − 2
27

v0,xxxxxxx − 22v0v0,xv0,xx − 12v1,xv1v0 + 6v1,xv0,xv0

−10
3

v0,xxxxv0,x − 8
3

v0,xxxv0,xx − 8
3

v0v0,xxxxx − 16
3

v2
0v0,xxx + 71

3
v1,xv1,xx

+6v3
0v0,x − 16v2

1v0,x − 10v1v2
0,x + 26

3
v0,xxxv1,x + 41

3
v1v1,xxx − 11

3
v0v1,xxxx

+7
3

v1,xxv0,xx − 20
3

v3
0,x + 3v1,xxv2

0 − 10
3

v1,xxxv0,x + 20
3

v1v0,xxxx. (4.14)

5. SUMMARY

In this paper, in terms of the Lax triple (Bm, Bn, L), we investigated the generalized Lax equation of the KdV and Boussinesq hierarchies.
When m = 0, the generalized Lax equation reduces to the usual Lax equation. We derived integrable evolution equations from the KdV
and Boussinesq hierarchies. We got some soliton wave solutions from the nonlinear evolution equations of the generalized KdV hierarchy.
Moreover, the evolution equations for the generalized KdV hierarchy seemed to be ∂v0

∂tmn
= 0 when m + n is even. We also derived some

generalized nonlinear evolution equations from the generalized Boussinesq Lax equation. More properties of the generalized KdV and
Boussinesq hierarchies still deserve further study.
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